Значение слова "АЭРОДИНАМИКА: ХАРАКТЕРИСТИКИ ВОЗДУХА И ДРУГИХ ТЕКУЧИХ СРЕД" найдено в 1 источнике

АЭРОДИНАМИКА: ХАРАКТЕРИСТИКИ ВОЗДУХА И ДРУГИХ ТЕКУЧИХ СРЕД

найдено в "Энциклопедии Кольера"
АЭРОДИНАМИКА: ХАРАКТЕРИСТИКИ ВОЗДУХА И ДРУГИХ ТЕКУЧИХ СРЕДК статье АЭРОДИНАМИКАВ аэродинамике принимаются во внимание такие свойства воздуха, как плотность, давление, температура и молекулярный состав.Воздух состоит из молекул ряда химических элементов, в основном азота (78%) и кислорода (21%). Имеются также небольшие примеси аргона, углекислого газа, водорода и других газов. Число молекул в единице объема воздуха чрезвычайно велико: на уровне моря при температуре 15? С в 1 м3 содержится 2,7?1025 молекул. Плотность определяется как масса воздуха, содержащегося в единице объема.Давление представляет собой силу, действующую на единицу площади. Молекулы воздуха находятся в непрерывном движении; они соударяются с ограничивающей воздух поверхностью и отражаются от нее. Сумма всех импульсов, сообщаемых молекулами, падающими на единицу площади поверхности за единицу времени, равна давлению.Температура воздуха (или какого-либо другого газа) служит мерой средней кинетической энергии молекул (равной половине произведения массы на квадрат скорости), отнесенной к единице массы.Важной физической характеристикой газа, зависящей только от температуры, является скорость звука. Скорость звука a (м/с) в воздухе можно вычислить, зная абсолютную температуру T (K), по формуле .Связь между давлением p, плотностью ? и абсолютной температурой T дается формулой p = ?RT, где R - газовая постоянная, равная 287,14 м2/с2?К для воздуха. Из этой формулы следует закон Бойля, согласно которому при постоянной температуре p/? = const, т.е. изменение плотности прямо пропорционально изменению давления.Изменения давления и плотности воздуха по высоте согласуются с этими законами. Давление и плотность уменьшаются, по сравнению с их значениями на уровне моря, в 2 раза на высоте 6 км, в 5 раз на высоте 12 км и в 100 раз на высоте 30 км.В нижних слоях атмосферы температура воздуха также снижается при увеличении высоты. Стандартная температура на уровне моря составляет 288 К. Она уменьшается до 256 К на высоте 5 км и до 217 К на высоте 12 км.Важной характеристикой движущейся среды является ее вязкость. Вязкость проявляется через свойство прилипания текучей среды к поверхности, тогда как невязкая среда свободно скользит вдоль обтекаемой поверхности. Чтобы проиллюстрировать влияние вязкости, порождающей силу, замедляющую течение (силу сопротивления), рассмотрим две большие параллельные друг другу пластины A и B (рис. 1), одна из которых движется относительно другой. Вязкая среда прилипает к каждой из пластин. Случайные движения молекул создают эффект "перемешивания", стремящегося выровнять средние скорости течения, скорость которого на пластине B равна V, а на пластине A - нулю. Результирующее распределение скоростей также приведено на рис. 1, где длина стрелок пропорциональна величине скорости в данной точке течения по высоте между пластинами. Таким образом, на движущуюся пластину B действует сила, тормозящая ее движение. Чтобы обеспечить движение пластины B при наличии торможения, к ней должна быть приложена противодействующая сила. Такая же сила стремится привести в движение пластину A.Величина силы, необходимой для поддержания движения пластины B со скоростью 1 м/с (или удержания на месте неподвижной пластины A), при условии, что расстояние между пластинами равно 1 м, а площадь каждой из них - 1 м2, называется коэффициентом вязкости ?. Для воздуха при температуре 0? С и давлении 1 атм ? = 1,73?10-5 H?c/м2. Эксперименты показывают, что коэффициент вязкости воздуха изменяется в зависимости от температуры пропорционально T0,76.
T: 43