Значение слова "ВНУТРЕННЯЯ ЭНЕРГИЯ" найдено в 26 источниках

ВНУТРЕННЯЯ ЭНЕРГИЯ

найдено в "Большой Советской энциклопедии"
        энергия тела, зависящая только от его внутреннего состояния. Понятие В. э. объединяет все виды энергии тела, за исключением энергии его движения как целого и потенциальной энергии, которой тело может обладать, если оно находится в поле каких-нибудь сил (например, в поле сил тяготения).
         Понятие В. э. ввёл У. Томсон (1851), определив изменение В. э. (ΔU) тела (физической системы) в каком-нибудь процессе как алгебраическую сумму количества теплоты Q которой система обменивается в ходе процесса с окружающей средой, и работы А, совершённой системой или произведённой над ней:
         ΔU = Q - A (1)
         Принято считать работу А положительной, если она производится системой над внешними телами, а количество теплоты Q положительным, если оно передаётся системе. Уравнение (1) выражает Первое начало термодинамики закон сохранения энергии в применении к процессам, в которых происходит передача теплоты.
         Согласно закону сохранения энергии, В. э. является однозначной функцией состояния физической системы, т. е. однозначной функцией независимых переменных, определяющих это состояние, например, температуры Т и объёма V или давления р. Хотя каждая из величин (Q и A) зависит от характера процесса, переводящего систему из состояния с В. э. U1 в состояние с энергией U2, однозначность В. э. приводит к тому, что ΔU определяется лишь значениями В. э. в начальном и конечном состояниях: ΔU = U2 — U1. Для любого замкнутого процесса, возвращающего систему в первоначальное состояние (U2 = U1), изменение В. э. равно нулю и Q = А (см. Круговой процесс).
         Изменение В.э. системы в адиабатном процессе (См. Адиабатный процесс) (при отсутствии теплообмена с окружающей средой, т. е. при Q = 0) равно работе, производимой над системой или произведённой системой.
         В случае простейшей физической системы — идеального газа (См. Идеальный газ) изменение В. э., как показывает кинетическая теория газов, сводится к изменению кинетической энергии молекул, определяемой температурой (см. Газы). Поэтому изменение В. э. идеального газа (или близких к нему по свойствам газов с малым межмолекулярным взаимодействием) определяется только изменением его температуры (закон Джоуля). В физических системах, частицы которых взаимодействуют между собой (реальные газы, жидкости, твёрдые тела), В. э. включает также энергию межмолекулярных и внутримолекулярных взаимодействий. В. э. таких систем зависит как от температуры, так и от давления (объёма).
         Экспериментально можно определить только прирост или убыль В. э. в физическом процессе (за начало отсчёта можно взять, например, исходное состояние). Методы статистической физики (См. Статистическая физика) позволяют, в принципе, теоретически рассчитать В. э. физической системы, но также лишь с точностью до постоянного слагаемого, зависящего от выбранного нуля отсчёта.
         В области низких температур с приближением к абсолютному нулю (—273,16°С) В. э. конденсированных систем (жидких и твёрдых тел) приближается к определённому постоянному значению U 0, становясь независимой от температуры (см. Третье начало термодинамики). Значение U 0 может быть принято за начало отсчёта В. э.
         В. э. относится к числу основных термодинамических потенциалов (см. Потенциалы термодинамические). Изменение В. э. при постоянных объёме и температуре системы характеризует Тепловой эффект реакции, а производная В. э. по температуре при постоянном объёме определяет Теплоёмкость системы.
         Лит. см. при ст. Потенциалы термодинамические.
         А. А. Лопаткин.


Найдено 8 изображений:

Изображения из описаний на этой странице
найдено в "Большой советской энциклопедии"

ВНУТРЕННЯЯ ЭНЕРГИЯ, энергия тела, зависящая только от его внутр. состояния. Понятие В. э. объединяет все виды энергии тела, за исключением энергии его движения как целого и потенциальной энергии, к-рой тело может обладать, если оно находится в поле к.-н. сил (напр., в поле сил тяготения).

Понятие В. э. ввёл У. Томсон (1851), определив изменение В. э. (дельта U) тела (физ. системы) в каком-нибудь процессе как алгебр, сумму количества теплоты Q, к-рой система обменивается в ходе процесса с окружающей средой, и работы А, совершённой системой или произведённой над ней: дельта U = О-A (1) Принято считать работу А положительной, если она производится системой над внешними телами, а количество теплоты Q положительным, если оно передаётся системе. Уравнение (1) выражает первое начало термодинамики - закон сохранения энергии в применении к процессам, в которых происходит передача теплоты.

Согласно закону сохранения энергии, В. э. является однозначной функцией состояния физ. системы, т. е. однозначной функцией независимых переменных, определяющих это состояние, напр, темп-ры Т и объёма V или давления р. Хотя каждая из величин (Q и A) зависит от характера процесса, переводящего систему из состояния с В. э. U1в состояние с энергией U2, однозначность В. э. приводит к тому, что дельта U определяется лишь значениями В. э. в начальном и конечном состояниях: дельта U = U2- - U1. Для любого замкнутого процесса, возвращающего систему в первоначальное состояние (U2= U1), изменение В. э. равно нулю и Q - А (см. Круговой процесс).

Изменение В. э. системы в адиабатном процессе (при отсутствии теплообмена с окружающей средой, т. е. при Q = 0) равно работе, производимой над системой или произведённой системой.

В случае простейшей физ. системы - идеального газа - изменение В. э., как показывает кинетич. теория газов, сводится к изменению кинетич. энергии молекул, определяемой темп-рой (см. Газы). Поэтому изменение В. э. идеального газа (или близких к нему по свойствам газов с малым межмолекулярным взаимодействием) определяется только изменением его темп-ры (закон Джоуля). В физ. системах, частицы к-рых взаимодействуют между собой (реальные газы, жидкости, твёрдые тела), В. э. включает также энергию межмолекулярных и внутримолекулярных взаимодействий. В. э. таких систем зависит как от темп-ры, так и от давления (объёма).

Экспериментально можно определить только прирост или убыль В. э. в физ. процессе (за начало отсчёта можно взять, напр., исходное состояние). Методы статистической физики позволяют, в принципе, теоретически рассчитать В. э. физ. системы, но также лишь с точностью до постоянного слагаемого, зависящего от выбранного нуля отсчёта.

В области низких темп-р с приближением к абсолютному нулю (-273,16°С) В. э. конденсированных систем (жидких и твёрдых тел) приближается к определённому постоянному значению U0. становясь независимой от темп-ры (см. Третье начало термодинамики). Значение Uо может быть принято за начало отсчёта В. э.

В. э. относится к числу основных термодинамич. потенциалов (см. Потенциалы термодинамические). Изменение В. э. при постоянных объёме и темп-ре системы характеризует тепловой эффект реакции, а производная В. э. по темп-ре при постоянном объёме определяет теплоёмкость системы.

Лит. см. при ст. Потенциалы термодинамические. А. А, Лопаткин.





найдено в "Химической энциклопедии"
термодинамич. ф-ция состояния системы, ее энергия, определяемая внутр. состоянием. В. э. складывается в осн. из кинетич. энергии движения частиц (атомов, молекул, ионов, электронов) и энергии взаимод. между ними (внутри- и межмолекулярной). На В. э. влияет изменение внутр. состояния системы под действием внеш. поля; во В. э. входит, в частности, энергия, связанная с поляризацией диэлектрика во внеш. электрич. поле и намагничиванием парамагнетика во внеш. магн. поле. Кинетич. энергия системы как целого и потенциальная энергия, обусловленная пространств. расположением системы, во В. э. не включаются. В термодинамике определяется лишь изменение В. э. в разл. процессах. Поэтому В. э. задают с точностью до нек-рого постоянного слагаемого, зависящего от энергии, принятой за нуль отсчета.

В. э. Uкак ф-ция состояния вводится первым началом термодинамики, согласно к-рому разность между теплотой Q, переданной системе, и работой W, совершаемой системой, зависит только от начального и конечного состояний системы и не зависит от пути перехода, т. е. представляет изменение ф-ции состояния ВНУТРЕННЯЯ ЭНЕРГИЯ фото №1

ВНУТРЕННЯЯ ЭНЕРГИЯ фото №2

где U1 и 2 - В. э. системы в начальном и конечном состояниях соответственно. Ур-ние (1) выражает закон сохранения энергии в применении к термодинамич. процессам, т. е. процессам, в к-рых происходит передача теплоты. Для циклич. процесса, возвращающего систему в начальное состояние,ВНУТРЕННЯЯ ЭНЕРГИЯ фото №3 . В изохорных процессах, т. е. процессах при постоянном объеме, система не совершает работы за счет расширения, W=0 и теплота, переданная системе, равна приращению В. э.: v=ВНУТРЕННЯЯ ЭНЕРГИЯ фото №4. > Для адиабатич. процессов, когда Q= 0,ВНУТРЕННЯЯ ЭНЕРГИЯ фото №5 = - W.

В.э. системы как ф-ция ее энтропии S, объема V и числа молей mi i-того компонента представляет собой термодинамический потенциал. Это является следствием первого и второго начал термодинамики и выражается соотношением:

ВНУТРЕННЯЯ ЭНЕРГИЯ фото №6 "

где Т - абс. т-ра, р- давление,ВНУТРЕННЯЯ ЭНЕРГИЯ фото №7 -хим. потенциал i-того компонента. Знак равенства относится к равновесным процессам, знак неравенства-к неравновесным. Для системы с заданными значениями S, V,mi (закрытая система в жесткой адиабатной оболочке) В. э. при равновесии минимальна. Убыль В. э. в обратимых процессах при постоянных Vи Sравна макс. полезной работе (см. Максимальная работа реакции).

Зависимость В. э. равновесной системы от т-ры и объема U =f(T, V )наз. калорическим уравнением состояния. Производная В. э. по т-ре при постоянном объеме равна изохорной теплоемкости:

ВНУТРЕННЯЯ ЭНЕРГИЯ фото №8

В. э. идеального газа от объема не зависит и определяется только т-рой.

Экспериментально определяют значение В. э. в-ва, отсчитываемое от ее значения при абс. нуле т-ры. Определение В. э. требует данных о теплоемкости С V (Т),> теплотах фазовых переходов, об ур-нии состояния. Изменение В. э. при хим. р-циях (в частности, стандартная В. э. образования в-ва) определяется по данным о тепловых эффектах р-ций, а также по спектральным данным. Теоретич. расчет В. э. осуществляется методами статистич. термодинамики, к-рая определяет В. э. как среднюю энергию системы в заданных условиях изоляции (напр., при заданных Т, V,mi). В. э. одноатомного идеального газа складывается из средней энергии поступат. движения молекул и средней энергии возбужденных электронных состояний; для двух- и многоатомных газов к этому значению добавляется также средняя энергия вращения молекул и их колебаний около положения равновесия. В. э. 1 моля одноатомного идеального газа при т-рах порядка сотен К составляет 3RT/2, где R-газовая постоянная; она сводится к средней энергии поступат. движения молекул. Для двухатомного газа мольное значение В. э.-ок. 5RT/2 (сумма поступат. и вращат. вкладов). Указанные значения отвечают закону равнораспределения энергии для названных видов движения и вытекают из законов классич. статистич. механики. Расчет колебат. и электронного вкладов во В. э., а также вращат. вклада при низких т-рах требует учета квантовомех. закономерностей. В. э. реальных систем включает помимо вкладов, учитываемых для идеального газа, также среднюю энергию межмолекулярных взаимодействии.

Лит.: Ландау Л. Д., Лифшиц Е. М., Статистическая физика, 2 изд., М., 1964; Полторак О. М., Лекции по химической термодинамике, М., 1971; Ка-рапетьянц М. X., Химическая термодинамика, 3 изд., М., 1975. Н. А. Смирнова.



T: 51