Значение слова "КРИТИЧЕСКАЯ ТЕМПЕРАТУРА" найдено в 37 источниках

КРИТИЧЕСКАЯ ТЕМПЕРАТУРА

найдено в "Энциклопедическом словаре Ф.А. Брокгауза и И.А. Ефрона"
та, при которой видимое различие между жидкостью и ее паром исчезает. Явление наблюдается при нагревании жидкостей в запаянных трубках. При этом поверхность, ограничивающая жидкость, постепенно утрачивает кривизну, мениск становится плоским и, наконец, перестает быть видимым. При дальнейшем повышении температуры содержимое трубки представляется однородным и нельзя более различать жидкости и ее пара. Охлаждая трубку, вблизи температуры исчезания мениска в массе наблюдаются струйки, движение и при дальнейшем охлаждении появляется снова поверхность, разделяющая жидкость и пар. Необходимость слияния жидкости и ее пара в одно состояние вытекает из того, что при нагревании плотность жидкости уменьшается, а плотность ее насыщенного пара увеличивается; весьма вероятно, следовательно, наступление температуры, при которой плотности жидкости и ее насыщенного пара сделаются равными. Это и будет К. температура. Наступление ее обнаруживается также формой кривых, выражающих зависимость между давлением и объемом (изотермы) при разных температурах. Если при сжатии газа наступает сжижение, то это выражается резким переходом кривой давлений в горизонтальную прямую, которая тянется до тех пор, пока над жидкостью имеется пар, ибо давление насыщенного пара не зависит от его объема. Когда сжижение кончено, объем представляет объем жидкости, — и при дальнейшем сжатии изотерма резко поворачивает кверху, обнаруживая малую сжимаемость жидкостей. Изотерма для этого случая представляет, следовательно, три участка: 1) изотерма пара, близкая к гиперболе, выражающей зависимость между объемом и давлением газов (идеальных); 2) горизонтальная прямая, характеризующая смесь пара и жидкости; 3) изотерма жидкости, в которой малому уменьшению объема отвечает весьма большое увеличение давления. С повышением темп. длина горизонтального участка изотермы сокращается, ибо объем жидкости становится больше, а сжижение начинается при меньшем объеме газа (большей плотности). При некоторой температуре горизонтальный участок изотермы исчезает, и при более высоких температурах изотермы являются уже сплошными кривыми, в которых о бывших раньше переломах свидетельствуют лишь изменения кривизны.Наблюдения над К. температурой и изучения изотермы вблизи К. температуры разъяснили условия сжижения газов, не исключая и постоянных, и послужили основой учения о непрерывности газообразного и жидкого состояний. Они привели к положению, что выше К. температуры нет различных состояний тела, а существует лишь непрерывный ряд изменений объема в зависимости от давления, причем тело при больших давлениях обнаруживает малую сжимаемость как у жидкостей, а при малых более или менее следует закону сжимаемости газов. После того как Ван-дер Вальс (см.), исходя из положения о непрерывности газообразного и жидкого состояний, дал общее уравнение, выражающее зависимость между температурой, давлением и объемом для обоих состояний, изучение К. температуры, ей отвечающих объема жидкости и давления (К. объема и давления) приобрели особый интерес. Подробности этого важного предмета изложены в статьях: Вальса формула, Газы сжиженные, Газы Жидкости (см.). Здесь будет указано лишь на сомнения, возбужденные рядом работ последнего времени, касательно самой сущности явления. Несколько исследователей нашли, что и выше К. температуры жидкость и пар различаются, что плотности пара и жидкости при К. температуре неодинаковы, что объем жидкости при К. т. оказывается гораздо меньше, если во время нагревания она была лишена свободной поверхности, т. е. если над нею не было пара. Эти наблюдения приводят авторов к взгляду на жидкости, как на состояние, по существу отличное от газообразного. Несомненно, что результаты этого рода обусловливаются экспериментальными трудностями предмета. Трудно иметь жидкость свободную от посторонних подмесей, еще труднее избавиться от подмеси посторонних газов. Если воздух совершенно удален из трубки с жидкостью, то при ее запаивании может произойти небольшое количество газов от соприкосновения ее паров с накаленной частью трубки. Куэнен показал, что, приняв возможные меры к устранению подмеси посторонних газов, удается свести указанные различия плотностей жидкости и пара при К. температуре до весьма малых величин, несомненно тогда уже происходящих от ошибок опыта. См. "Communications from the laboratory of physics at the University of Leiden" (1894).
Д. Коновалов.


Найдено 1 изображение:

Изображения из описаний на этой странице
найдено в "Большой Советской энциклопедии"
        1) температура вещества в его критическом состоянии (См. Критическое состояние). Для индивидуальных веществ К. т. определяется как температура, при которой исчезают различия в физических свойствах между жидкостью и паром, находящимися в равновесии. При К. т. плотности насыщенного пара и жидкости становятся одинаковыми, граница между ними исчезает и теплота парообразования обращается в нуль. К. т. — одна из неизменяющихся характеристик (констант) вещества. Значения К. т. Tk некоторых веществ приведены в ст. Критическая точка.
         В двойных системах (например, пропан — изопентан) равновесие жидкость — пар имеет не одну К. т., а пространственную критическую кривую, крайними точками которой являются К. т. чистых компонентов.
         2) температура, при которой в жидких смесях (См. Жидкие смеси) с ограниченно растворимыми компонентами наступает их взаимная неограниченная растворимость; её называют К. т. растворимости.
         3) температура перехода ряда проводников в сверхпроводящее состояние (см. Сверхпроводимость). Измерена у большого числа металлов, сплавов и химических соединений. В чистых металлах наинизшая К. т. наблюдается у Ti (0,37 К), самая высокая — у Тс (11,2 К). Очень высокое значение К. т. найдено у сплава Nb, Al и Ge (Tk≈21 К).


найдено в "Энциклопедическом словаре"
Критическая температура — та, при которой видимое различие между жидкостью и ее паром исчезает. Явление наблюдается при нагревании жидкостей в запаянных трубках. При этом поверхность, ограничивающая жидкость, постепенно утрачивает кривизну, мениск становится плоским и, наконец, перестает быть видимым. При дальнейшем повышении температуры содержимое трубки представляется однородным и нельзя более различать жидкости и ее пара. Охлаждая трубку, вблизи температуры исчезания мениска в массе наблюдаются струйки, движение и при дальнейшем охлаждении появляется снова поверхность, разделяющая жидкость и пар. Необходимость слияния жидкости и ее пара в одно состояние вытекает из того, что при нагревании плотность жидкости уменьшается, а плотность ее насыщенного пара увеличивается; весьма вероятно, следовательно, наступление температуры, при которой плотности жидкости и ее насыщенного пара сделаются равными. Это и будет К. температура. Наступление ее обнаруживается также формой кривых, выражающих зависимость между давлением и объемом (изотермы) при разных температурах. Если при сжатии газа наступает сжижение, то это выражается резким переходом кривой давлений в горизонтальную прямую, которая тянется до тех пор, пока над жидкостью имеется пар, ибо давление насыщенного пара не зависит от его объема. Когда сжижение кончено, объем представляет объем жидкости, — и при дальнейшем сжатии изотерма резко поворачивает кверху, обнаруживая малую сжимаемость жидкостей. Изотерма для этого случая представляет, следовательно, три участка: 1) изотерма пара, близкая к гиперболе, выражающей зависимость между объемом и давлением газов (идеальных); 2) горизонтальная прямая, характеризующая смесь пара и жидкости; 3) изотерма жидкости, в которой малому уменьшению объема отвечает весьма большое увеличение давления. С повышением темп. длина горизонтального участка изотермы сокращается, ибо объем жидкости становится больше, а сжижение начинается при меньшем объеме газа (большей плотности). При некоторой температуре горизонтальный участок изотермы исчезает, и при более высоких температурах изотермы являются уже сплошными кривыми, в которых о бывших раньше переломах свидетельствуют лишь изменения кривизны. Наблюдения над К. температурой и изучения изотермы вблизи К. температуры разъяснили условия сжижения газов, не исключая и постоянных, и послужили основой учения о непрерывности газообразного и жидкого состояний. Они привели к положению, что выше К. температуры нет различных состояний тела, а существует лишь непрерывный ряд изменений объема в зависимости от давления, причем тело при больших давлениях обнаруживает малую сжимаемость как у жидкостей, а при малых более или менее следует закону сжимаемости газов. После того как Ван-дер Вальс (см.), исходя из положения о непрерывности газообразного и жидкого состояний, дал общее уравнение, выражающее зависимость между температурой, давлением и объемом для обоих состояний, изучение К. температуры, ей отвечающих объема жидкости и давления (К. объема и давления) приобрели особый интерес. Подробности этого важного предмета изложены в статьях: Вальса формула, Газы сжиженные, Газы Жидкости (см.). Здесь будет указано лишь на сомнения, возбужденные рядом работ последнего времени, касательно самой сущности явления. Несколько исследователей нашли, что и выше К. температуры жидкость и пар различаются, что плотности пара и жидкости при К. температуре неодинаковы, что объем жидкости при К. т. оказывается гораздо меньше, если во время нагревания она была лишена свободной поверхности, т. е. если над нею не было пара. Эти наблюдения приводят авторов к взгляду на жидкости, как на состояние, по существу отличное от газообразного. Несомненно, что результаты этого рода обусловливаются экспериментальными трудностями предмета. Трудно иметь жидкость свободную от посторонних подмесей, еще труднее избавиться от подмеси посторонних газов. Если воздух совершенно удален из трубки с жидкостью, то при ее запаивании может произойти небольшое количество газов от соприкосновения ее паров с накаленной частью трубки. Куэнен показал, что, приняв возможные меры к устранению подмеси посторонних газов, удается свести указанные различия плотностей жидкости и пара при К. температуре до весьма малых величин, несомненно тогда уже происходящих от ошибок опыта. См. "Communications from the laboratory of physics at the University of Leiden" (1894). Д. Коновалов.



найдено в "Физической энциклопедии"

1) теып-ра в-ва в его критическом состоянии. Для индивидуальных в-в К. т. определяется как темп-pa, при к-рой исчезают различия в физ. св-вах между жидкостью и паром, находящимися в равновесии. При К. т. плотности насыщенного пара и жидкости становятся одинаковыми, граница между ними исчезает и теплота парообразования обращается в нуль.К. т.— одна из физ.-хим. констант в-ва. Значения К. т. Тк нек-рых в-в приведены в ст. Критическая точка.
КРИТИЧЕСКАЯ ТЕМПЕРАТУРА фотожидкость — пар и критич. кривая (KС3H8 — Кизо-С5H12) системы пропан — изопентан при разл. концентрации изопентана.
В двойных системах (напр., пропан — изопентан, рис.) равновесие жидкость — пар имеет не одну К. т., а пространственную критич. кривую, крайними точками к-рой явл. К. т. чистых компонентов.
2) Темп-pa, при к-рой в жидких смесях с ограниченно растворимыми компонентами наступает их взаимная неограниченная растворимость; её называют К. т. растворимости (см. рис. 3 в ст. (см. КРИТИЧЕСКОЕ СОСТОЯНИЕ)).
3) Темп-ра перехода ряда проводников в сверхпроводящее состояние (см. СВЕРХПРОВОДИМОСТЬ). Измерена у мн. металлов, сплавов и хим. соединений. В чистых металлах наинизшая К. т. обнаружена у W (=0,01 К), наивысшая — у Nb (9,2 К). Очень высокое значение К. т. у Nb3Ge (Tк»23 К).

Физический энциклопедический словарь. — М.: Советская энциклопедия..1983.

КРИТИЧЕСКАЯ ТЕМПЕРАТУРА

- темп-pa, соответствующая критической точке или точке фазового перехода 2-го рода.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия..1988.



найдено в "Нефтегазовой микроэнциклопедии"
critical temperature
Температура, выше которой, газ не может быть превращен в жидкость ни при каком давлении. Выше критической температуры вещество не может находиться в двухфазном состоянии и процессы конденсации и испарения становятся невозможными. Давление, соответствующее критической точке, называется критическим давлением, а объем – критическим объемом.
Применительно к нефтяным газам, состоящим из смеси углеводородов с различными критическими температурами и давлениями, пользуются псевдокритическими давлением и температурой, представляющими собой суммы произведений относительного содержания данного углеводорода в смеси (в долях единицы, если задано объемное содержание, или в молях) и значений критических давлений и температур этих же углеводородов.
Отношение давления (температуры), под которым находится смесь газов, к псевдо-критическому давлению (температуре) называется приведенным псевдокритическим давлением (температурой), зная которые можно найти значения коэффициентов сверхсжимаемости реальных газов.


найдено в "Энциклопедическом словаре по металлургии"
[critical temperature] — температура, ниже которой электрическое сопротивление вещества скачком падает до нуля и вещество переходит в сверхпроводниковое состояние (Смотри Сверхпроводимость);
Смотри также:
— Температура
— яркостная температура
— теоретическая температура горения
— температура Кюри
— температура красного каления
— температура кипения растворов
— температура замерзания растворов
— температура горения
— температура вспышки
— радиационная температура
— калориметрическая температура
— дебаевская температура
— гомологическая температура
— высокая температура
— абсолютная температура
— температура размягчения
— температура фазового перехода
— цветовая температура
— термодинамическая температура
— температура кипения
— температура плавления

T: 65