Значение слова "СТАТИКА" найдено в 115 источниках

СТАТИКА

найдено в "Энциклопедическом словаре Ф.А. Брокгауза и И.А. Ефрона"
представляет собой тот отдел механики, в котором рассматриваются условия равновесия сил, приложенных к телу. При равновесии сил требуется, чтобы ни одна точка тела не имела ускорения. Если рассматриваемое тело есть свободная материальная точка, то для равновесия приложенных к ней сил необходимо, чтобы их геометрическая сумма (см.) или равнодействующая была равна нулю. Если материальная точка не может сходить с гладкой поверхности, то, при положениях равновесия, геометрическая сумма приложенных к ней сил должна быть равна и прямо противоположна реакции поверхности, а так как реакция гладкой поверхности направлена по нормали, то и геометрическая сумма приложенных к точке сил должна быть направлена по нормали. В этом состоит условие равновесия сил, приложенных к материальной точке, остающейся на гладкой поверхности.Если имеем систему, состоящую из n материальных точек, связанных между собою p механическими связями, то число условий равновесия, которым должны удовлетворять силы в случае равновесия, должно быть равно 3n—p=k, т. е. числу степеней свободы (см.) системы. Эти условия равновесия могут быть получены или из уравнений равновесия, число которых равно 3n, или же помощью начала возможных перемещений (см. Виртуальные перемещения), примененного к рассматриваемой системе. В случае свободной неизменяемой системы или свободного твердого тела число степеней свободы равно шести, а потому таково же число условий равновесия свободного твердого тела. Три из этих условий выражают, что равны нулю проекции на оси координат главного вектора всех приложенных к телу сил; другие три условия выражают, что равны нулю проекции на оси координат главного момента сил вокруг какой-либо точки. Говоря иначе, для равновесия сил, приложенных к свободному твердому телу, необходимо, чтобы были равны нулю главный вектор и главный момент их вокруг любой точки. Если твердое тело несвободно, а опирается на опоры, то нужно принять во внимание реакции этих опор. Все это излагается в курсах теоретической механики и в специальных курсах С.; там же рассматриваются также и вопросы о том, каким образом можно уравновесить данную совокупность сил, приложенных к твердому телу. Оказывается, что в тех случаях, когда главный момент сил перпендикулярен к главному вектору их, то можно найти такую прямую линию, параллельную главному вектору (центральную ось), вокруг точек которой главный момент сил равен нулю. Данная совокупность сил может быть в этом случае уравновешена одной силой, равной и прямо противоположной главному вектору и приложенной к любой точке центральной оси. Если главный вектор совокупности сил равен нулю, но главный момент не равен нулю, то совокупность сил может быть уравновешена парой сил. Если ни главный момент, ни главный вектор не равны нулю, то всегда можно уравновесить совокупность сил двумя силами, и притом весьма различным образом. Можно также в этих случаях уравновесить совокупность сил одной силой и одной парой сил. Кроме того, всегда можно найти такую прямую линию, параллельную главному вектору, что главный момент вокруг любой точки этой прямой будет параллелен главному вектору. Такая прямая линия называется центральной осью данной совокупности сил. Силы эти можно уравновесить парой сил, момент которых противоположен и равен центральному главному моменту, и одной силой, равной и противоположной главному вектору и приложенной к любой точке центральной оси. Если к твердому телу приложены параллельные силы, главный вектор которых не равен нулю, то эту совокупность можно уравновесить одной силой, противоположной и равной их равнодействующей. В этом случае можно найти такую точку, положение которой не изменится при перемене общего направления параллельных сил; такая точка называется центром параллельных сил. В С., кроме равновесия сил, приложенных к твердому телу, рассматриваются также вопросы о равновесии гибких нитей, гибких поверхностей и других деформируемых упругих и неупругих тел, а также жидкостей.
Д. Б.


Найдено 13 изображений:

Изображения из описаний на этой странице
найдено в "Энциклопедическом словаре Ф.А. Брокгауза и И.А. Ефрона"
представляет собой тот отдел механики, в котором рассматриваются условия равновесия сил, приложенных к телу. При равновесии сил требуется, чтобы ни одна точка тела не имела ускорения. Если рассматриваемое тело есть свободная материальная точка, то для равновесия приложенных к ней сил необходимо, чтобы их геометрическая сумма (см.) или равнодействующая была равна нулю. Если материальная точка не может сходить с гладкой поверхности, то, при положениях равновесия, геометрическая сумма приложенных к ней сил должна быть равна и прямо противоположна реакции поверхности, а так как реакция гладкой поверхности направлена по нормали, то и геометрическая сумма приложенных к точке сил должна быть направлена по нормали. В этом состоит условие равновесия сил, приложенных к материальной точке, остающейся на гладкой поверхности.Если имеем систему, состоящую из n материальных точек, связанных между собою p механическими связями, то число условий равновесия, которым должны удовлетворять силы в случае равновесия, должно быть равно 3n—p=k, т. е. числу степеней свободы (см.) системы. Эти условия равновесия могут быть получены или из уравнений равновесия, число которых равно 3n, или же помощью начала возможных перемещений (см. Виртуальные перемещения), примененного к рассматриваемой системе. В случае свободной неизменяемой системы или свободного твердого тела число степеней свободы равно шести, а потому таково же число условий равновесия свободного твердого тела. Три из этих условий выражают, что равны нулю проекции на оси координат главного вектора всех приложенных к телу сил; другие три условия выражают, что равны нулю проекции на оси координат главного момента сил вокруг какой-либо точки. Говоря иначе, для равновесия сил, приложенных к свободному твердому телу, необходимо, чтобы были равны нулю главный вектор и главный момент их вокруг любой точки. Если твердое тело несвободно, а опирается на опоры, то нужно принять во внимание реакции этих опор. Все это излагается в курсах теоретической механики и в специальных курсах С.; там же рассматриваются также и вопросы о том, каким образом можно уравновесить данную совокупность сил, приложенных к твердому телу. Оказывается, что в тех случаях, когда главный момент сил перпендикулярен к главному вектору их, то можно найти такую прямую линию, параллельную главному вектору (центральную ось), вокруг точек которой главный момент сил равен нулю. Данная совокупность сил может быть в этом случае уравновешена одной силой, равной и прямо противоположной главному вектору и приложенной к любой точке центральной оси. Если главный вектор совокупности сил равен нулю, но главный момент не равен нулю, то совокупность сил может быть уравновешена парой сил. Если ни главный момент, ни главный вектор не равны нулю, то всегда можно уравновесить совокупность сил двумя силами, и притом весьма различным образом. Можно также в этих случаях уравновесить совокупность сил одной силой и одной парой сил. Кроме того, всегда можно найти такую прямую линию, параллельную главному вектору, что главный момент вокруг любой точки этой прямой будет параллелен главному вектору. Такая прямая линия называется центральной осью данной совокупности сил. Силы эти можно уравновесить парой сил, момент которых противоположен и равен центральному главному моменту, и одной силой, равной и противоположной главному вектору и приложенной к любой точке центральной оси. Если к твердому телу приложены параллельные силы, главный вектор которых не равен нулю, то эту совокупность можно уравновесить одной силой, противоположной и равной их равнодействующей. В этом случае можно найти такую точку, положение которой не изменится при перемене общего направления параллельных сил; такая точка называется центром параллельных сил. В С., кроме равновесия сил, приложенных к твердому телу, рассматриваются также вопросы о равновесии гибких нитей, гибких поверхностей и других деформируемых упругих и неупругих тел, а также жидкостей.
Д. Б.


найдено в "Большой Советской энциклопедии"
(от греч. statike — учение о весе, о равновесии)
        раздел механики, посвященный изучению условий равновесия материальных тел под действием сил. С. разделяют на геометрическую и аналитическую. В основе аналитической С. лежит возможных перемещении принцип (См. Возможных перемещений принцип), дающий общие условия равновесия любой механической системы. Геометрическая С. основывается на т. н. аксиомах С., выражающих свойства сил, действующих на материальную частицу и абсолютно твёрдое тело, т. е. тело, расстояния между точками которого всегда остаются неизменными. Основные аксиомы С. устанавливают, что: 1) две силы, действующие на материальную частицу, имеют равнодействующую, определяемую по правилу параллелограмма сил (См. Параллелограмм сил); 2) две силы, действующие на материальную частицу (или абсолютно твёрдое тело), уравновешиваются только тогда, когда они одинаковы по численной величине и направлены вдоль одной прямой в противоположные стороны; 3) прибавление или вычитание уравновешенных сил не изменяет действия данной системы на твёрдое тело. При этом уравновешенными называются силы, под действием которых свободное твёрдое тело может находиться в покое по отношению к инерциальной системе отсчёта (См. Инерциальная система отсчёта).
         Методами геометрической С. изучается С. твёрдого тела. При этом рассматриваются решения следующих двух типов задач: 1) приведение систем сил, действующих на твёрдое тело, к простейшему виду; 2) определение условий равновесия сил, действующих на твёрдое тело.
         Необходимые и достаточные условия равновесия упруго деформируемых тел, а также жидкостей и газов рассматриваются соответственно в упругости теории (См.Упругости теория), гидростатике (См. Гидростатика) и аэростатике (См. Аэростатика).
         К основным понятиям С. относится понятие о силе (См. Сила), о моменте силы (См. Момент силы) относительно центра и относительно оси и о паре сил (См. Пара сил). Сложение сил и их моментов относительно центра производится по правилу сложения векторов. Величина R, равная геометрической сумме всех сил Fk, действующих на данное тело, называется главным вектором этой системы сил, а величина М0, равная геометрической сумме моментов то (Рк) этих сил относительно центра О, называется главным моментом системы сил относительно указанного центра:
         R = СТАТИКА фото №1 СТАТИКА фото №2.
         Решение задачи приведения сил даёт следующий основной результат: любая система сил, действующих на абсолютно твёрдое тело, эквивалентна одной силе, равной главному вектору R системы и приложенной в произвольно выбранном центре О, и одной паре сил с моментом, равным главному моменту M0 системы относительно этого центра. Отсюда следует, что любую систему действующих на твёрдое тело сил можно задать её главным вектором и главным моментом. Этим результатом широко пользуются на практике, когда задают, например, аэродинамические силы, действующие на самолёт или ракету, усилия в сечении балки и др.
         Простейший вид, к которому можно привести данную систему сил, зависит от значений R и M0. Если R = 0, а M0 ≠ 0, то данная система сил заменяется одной парой с моментом M0. Если же R ≠ 0, а M0 = 0 или M0 ≠ 0, но векторы R и M0 взаимно перпендикулярны (что, например, всегда имеет место для параллельных сил или сил, лежащих на одной плоскости), то система сил приводится к равнодействующей, равной r. Наконец, когда R ≠ 0, M0 ≠ 0 и эти векторы не взаимно перпендикулярны, система сил заменяется совокупным действием силы и пары (или двумя скрещивающимися силами) и равнодействующей не имеет.
         Для равновесия любой системы сил, действующих на твёрдое тело, необходимо и достаточно обращение величины R и M0 в нуль. Вытекающие отсюда уравнения, которым должны удовлетворять действующие на тело силы при равновесии, см. в ст. Равновесие механической системы. Равновесие системы тел изучают, составляя уравнения равновесия для каждого тела в отдельности и учитывая закон равенства действия и противодействия. Если общее число реакций связей окажется больше числа уравнений, содержащих эти реакции, то соответствующая система тел является статически неопределимой; для изучения её равновесия надо учесть деформации тел.
         Графические методы решения задач С. основываются на построении многоугольника сил (См. Многоугольник сил) и верёвочного многоугольника (См. Верёвочный многоугольник).
         Лит.: Пуансо Л., Начала статики, П., 1920; Жуковский Н. Е., Теоретическая механика, 2 изд., М. — Л., 1952; Воронков И. М., Курс теоретической механики, 9 изд., М., 1961; Тарг С. М., Краткий курс теоретической механики, 9 изд., М., 1974; см. также лит. при ст. Механика.
         С. М. Тарг.


найдено в "Толковом словаре Ожегова"
СТАТИКА, -и, ж. 1. Раздел механики, изучающий законы равновесия тел поддействием приложенных к ним сил. С. и динамика. С. твердого тела. С.жидкостей. С. газов. 2. Состояние покоя в какой-н. определенный момент(книжн.). Описывать явление в статике. II прил. статический, -ая, -ое.
найдено в "Новом толково-словообразовательном словаре русского языка"
статика 1. ж. 1) Раздел теоретической механики, изучающий законы равновесия тел. 2) Равновесие тел под действием приложенных к ним сил (в физике). 2. ж. 1) Отсутствие движения, состояние покоя; неподвижность. 2) перен. Отсутствие развития.



найдено в "Русско-английском словаре"
статика
ж.
statics




найдено в "Словаре синонимов"
статика сущ., кол-во синонимов: 2 • макростатика (1) • механика (10) Словарь синонимов ASIS.В.Н. Тришин.2013. . Синонимы: макростатика, механика
T: 29