Значение слова "ГИДРОАКУСТИКА" найдено в 49 источниках

ГИДРОАКУСТИКА

найдено в "Большой Советской энциклопедии"
(от Гидро... и Акустика)
        раздел акустики, изучающий распространение звуковых волн в реальной водной среде (в океанах, морях, озёрах и т.д.) для целей подводной локации, связи и т.п. Существенная особенность подводных звуков — их малое затухание, вследствие чего под водой звуки могут распространяться на значительно большие расстояния, чем, например, в воздухе. Так, в области слышимых звуков для диапазона частот 500—2000 гц дальность распространения под водой звуков средней интенсивности достигает 15—20 км, а в области ультразвука — 3—5 км. Если исходить из величин затухания звука, наблюдаемых в лабораторных условиях в малых объёмах воды, то можно было бы ожидать значительно больших дальностей. Однако в естественных условиях, кроме затухания, обусловленного свойствами самой воды (т. н. вязкого затухания), сказываются ещё Рефракция звука и его рассеяние и поглощение различными неоднородностями среды.
         Рефракция звука, или искривление пути звукового луча, вызывается неоднородностью свойств воды, главным образом по вертикали, вследствие трёх основных причин: изменения гидростатического давления с глубиной, изменения солёности и изменения температуры вследствие неодинакового прогрева массы воды солнечными лучами. В результате совокупного действия этих причин скорость распространения звука, составляющая около 1450 м/сек для пресной воды и около 1500 м/сек для морской, изменяется с глубиной, причём закон изменения зависит от времени года, времени дня, глубины водоёма и ряда др. причин. Звуковые лучи, вышедшие из источника под некоторым углом к горизонту, изгибаются, причём направление изгиба зависит от распределения скоростей звука в среде (рис. 1). Летом, когда верхние слои теплее нижних, лучи изгибаются книзу и в большинстве своём отражаются от дна, теряя при этом значительную долю своей энергии.Наоборот, зимой, когда нижние слои воды сохраняют свою температуру, между тем как верхние слои охлаждаются, лучи изгибаются кверху и претерпевают многократные отражения от поверхности воды, при которых теряется значительно меньше энергии. Поэтому зимой дальность распространения звука больше, чем летом. Вследствие рефракции образуются т. н. мёртвые зоны (зоны тени — см. рис. 1, а), т. е. области, расположенные недалеко от источника, в которых слышимость отсутствует.
         Наличие рефракции, однако, может приводить к увеличению дальности распространения звука — явлению сверхдальнего распространения звуков под водой. На некоторой глубине под поверхностью воды находится слой, в котором звук распространяется с наименьшей скоростью; выше этой глубины скорость звука увеличивается из-за повышения температуры, а ниже — вследствие увеличения гидростатического давления с глубиной. Этот слой представляет собой своеобразный подводный звуковой канал. Луч, отклонившийся от оси канала вверх или вниз, вследствие рефракции всегда стремится попасть в него обратно (рис. 2). Если поместить источник и приёмник звука в этом слое, то даже звуки средней интенсивности (например, взрывы небольших зарядов в 1—2 кг) могут быть зарегистрированы на расстояниях в сотни и тысячи км. Существенное увеличение дальности распространения звука при наличии подводного звукового канала может наблюдаться при расположении источника и приёмника звука не обязательно вблизи оси канала, а, например, у поверхности. В этом случае лучи, рефрагируя книзу, заходят в глубоководные слои, где они отклоняются кверху и выходят снова к поверхности на расстоянии в несколько десятков км от источника. Далее картина распространения лучей повторяется и в результате образуется последовательность т. н. вторичных освещенных зон, которые обычно прослеживаются до расстояний в несколько сотен км. Явление сверхдальнего распространения звука в море было открыто независимо американскими учёными М. Ивингом и Дж. Ворцелем (1944) и советскими учёными Л. М. Бреховских и Л. Д. Розенбергом (1946).
         На распространение звуков высокой частоты, в частности ультразвуков, когда длины волн очень малы, оказывают влияние мелкие неоднородности, обычно имеющиеся в естественных водоёмах: микроорганизмы, пузырьки газов и т.д. Эти неоднородности действуют двояким образом: они поглощают и рассеивают энергию звуковых волн. В результате с повышением частоты звуковых колебаний дальность их распространения сокращается. Особенно сильно этот эффект заметен в поверхностном слое воды, где больше всего неоднородностей. Рассеяние звука неоднородностями, а также неровностями поверхности воды и дна вызывает явление подводной реверберации (См. Реверберация), сопровождающей посылку звукового импульса: звуковые волны, отражаясь от совокупности неоднородностей и сливаясь, дают затягивание звукового импульса, продолжающееся после его окончания, подобно реверберации, наблюдающейся в закрытых помещениях. Подводная реверберация — довольно значительная помеха для ряда практических применений Г., в частности для гидролокации (См. Гидролокация).
         Пределы дальности распространения подводных звуков лимитируются ещё и т. н. собственными шумами моря, имеющими двоякое происхождение. Часть шумов возникает от ударов волн на поверхности воды, от морского прибоя, от шума перекатываемой гальки и т.п. Другая часть связана с морской фауной; сюда относятся звуки, производимые рыбами и др. морскими животными (подробнее см. Биогидроакустика).
         Г. получила широкое практическое применение, т.к. никакие виды электромагнитных волн, включая и световые, не распространяются в воде (вследствие её электропроводности) на сколько-нибудь значительном расстоянии, и звук поэтому является единственным возможным средством связи под водой. Для этих целей пользуются как звуковыми частотами от 300 до 10000 гц, так и ультразвуками от 10000 гц и выше. В качестве излучателей и приёмников в звуковой области используются электродинамические и пьезоэлектрические излучатели и Гидрофоны, а в ультразвуковой — пьезоэлектрические и магнитострикционные. Из наиболее существенных применений Г. следует отметить Эхолот, Гидролокаторы, которыми пользуются для решения военных задач (поиски подводных лодок противника, бесперископная торпедная атака и т.д.); для мореходных целей (плавание вблизи скал, рифов и др.), рыбопромысловой разведки, поисковых работ и т.д. Пассивным средством подводного наблюдения служит Шумопеленгатор, позволяющий определить направление источника шума, например корабельного винта. Подводные мины снабжаются т. н. акустическими замыкателями (взрывателями), вызывающими взрыв заряда мины в момент прохождения над ней корабля. Самодвижущиеся торпеды могут самонаправляться на корабль по его шуму и т.д.
         Лит.: Физические основы подводной акустики, пер. с англ., под ред. В. И. Мясищева, М., 1955; Бреховских Л. М., Волны в слоистых средах, М., 1957; Подводная акустика, пер. с англ., под ред. Л. М. Бреховских, т. 1, М., 1965, т. 2, М., 1970: Сташкевич А. П., Акустика моря, Л., 1966: Толстой И., Клей К. С., Акустика океана, пер. с англ., М., 1969.
         Л. Д. Розенберг. Р. Ф. Швачко.
        ГИДРОАКУСТИКА фото №1
        Рис. 1. Рефракция звука в воде: а — летом; б — зимой; слева — изменение скорости с глубиной.
        ГИДРОАКУСТИКА фото №2
        Рис. 2. Распространение звука в подводном звуковом канале: а — изменение скорости звука с глубиной; б — ход лучей в звуковом канале.


Найдено 4 изображения:

Изображения из описаний на этой странице
найдено в "Новом толково-словообразовательном словаре русского языка"
гидроакустика ж. 1) Раздел акустики, в котором изучаются законы распространения звуковых волн в водной среде. 2) Гидроакустическая аппаратура.



найдено в "Русско-английском словаре"
гидроакустика
ж.
hydroacoustics




найдено в "Словаре синонимов"
гидроакустика сущ., кол-во синонимов: 2 • акустика (12) • сейсмогидроакустика (1) Словарь синонимов ASIS.В.Н. Тришин.2013. . Синонимы: акустика, сейсмогидроакустика
найдено в "Физической энциклопедии"

(от греч. hydor— вода и акустика), раздел акустики, в к-ром с целью подводной локации, связи и т. п. изучается распространение звук. волн в водной среде (в океанах, морях, озёрах и т. д.). Особенность подводных звуков — их слабое затухание, вследствие чего под водой звук может распространяться на значительно большие расстояния, чем, напр., в воздухе. Так, в диапазоне частот 500—2000 Гц дальность распространения под водой звука ср. интенсивности достигает 15—20 км, а в диапазоне УЗ частот — 3—5 км. Звук мог бы распространяться и на значительно большие расстояния, однако в естеств. условиях, кроме затухания, обусловленного вязкостью воды, ослабление звука происходит за счёт рефракции звука и его рассеяния и поглощения разл. неоднородностями среды. Рефракция звука вызывается неоднородностью св-в воды, гл. обр. по вертикали, вследствие
ГИДРОАКУСТИКА фото №1.
Рис. 1. Рефракция звука в воде: а — летом; б — зимой; слева — изменение скорости с глубиной.
изменения с глубиной гидростатич. давления, солёности и темп-ры в результате неодинакового прогрева массы воды солнечными лучами. В результате скорость распространения звука изменяется с глубиной, причём закон изменения зависит от времени года (рис. 1), времени дня, глубины водоёма и ряда др. причин; напр., зимой дальность распространения звука больше, чем летом. Из-за рефракции образуются т. н. зоны тени (мёртвые зоны — рис. 1, а), т. е. области, расположенные недалеко от источника, в к-рых слышимость отсутствует.
Рефракция, однако, может приводить не только к уменьшению, но и к увеличению дальности распространения звука (сверхдальнее распространение звука под водой). На нек-рой глубине под поверхностью воды находится слой, в к-ром звук распространяется с наименьшей скоростью; выше скорость звука увеличивается из-за повышения темп-ры, а ниже — вследствие увеличения гидростатич. давления с глубиной. Этот слой представляет собой своеобразный подводный звуковой канал. Луч, отклонившийся от оси канала вверх или вниз, вследствие рефракции возвращается в него обратно (рис. 2). Если поместить источник и приёмник звука в этом слое, то даже звук ср. интен сивности (напр., звуки взрыва небольших зарядов массой 1—2 кг) может быть зарегистрирован на расстояниях в сотни и тысячи км.
ГИДРОАКУСТИКА фото №2.
Рис. 2. Распространение звука в подводном звук. канале: а — изменение скорости звука с глубиной; б — ход лучей в звук. канале.
На распространение звука высокой частоты, в частности ультразвука, когда длины волн очень малы, оказывают влияние мелкие неоднородности, обычно имеющиеся в естеств. водоёмах: микроорганизмы, пузырьки газов и т. д. Они поглощают и рассеивают энергию звук. волн. В результате с повышением частоты звук. колебаний дальность их распространения сокращается. Особенно сильно этот эффект заметен в поверхностном слое воды, где больше всего неоднородностей. Рассеяние звука неоднородностями, а также неровностями поверхности воды и дна вызывает явление подводной реверберации, к-рая явл. значит. помехой для ряда практич. применений Г., в частности для гидролокации. Пределы дальности распространения подводного звука лимитируются также т. н. собств. шумами моря, с одной стороны, возникающими от ударов волн на поверхности воды, от морского прибоя, от шума перекатываемой гальки и т. п., а с другой стороны, связанными с морской фауной (звуки, производимые рыбами и др. морскими животными).
Г. получила широкое практич. применение, т. к. никакие виды эл.-магн. волн, включая и световые, не распространяются в воде (вследствие её значит. электропроводности) на сколько-нибудь значит. расстояния, поэтому звук явл. единств. возможным средством получения информации и средством связи под водой. Для этих целей пользуются как звук. частотами от 300 до 16 000 Гц, так и ультразвуковыми от 16 000 Гц и выше. Наиболее широко в Г. применяются эхолоты и гидролокаторы, к-рыми пользуются для навигац. целей (плавание вблизи скал, рифов и др.), для рыбопромысловой разведки, поисковых работ, для решения военных задач (поиски подводных лодок противника, бесперископная торпедная атака и т. д.). Пассивным средством подводного наблюдения служит шумопеленгатор.

Физический энциклопедический словарь. — М.: Советская энциклопедия..1983.


Синонимы:
акустика, сейсмогидроакустика



T: 46