Значение слова "КРИВИЗНА" найдено в 126 источниках

КРИВИЗНА

найдено в "Энциклопедическом словаре Ф.А. Брокгауза и И.А. Ефрона"
Под большей или меньшей кривизной линии разумеется большее или меньшее уклонение ее от прямолинейного вида, и можно сказать, что окружность тем кривее, чем меньшим радиусом она описана; при очень больших радиусах окружность уклоняется от прямолинейного направления весьма постепенно. Поэтому в математике К. окружности измеряется величиной обратной ее радиусу R; принимают; что К. окружности равна 1/R. К. прочих линий сравнивается с К. окружности следующим образом. К. плоских кривых. Если точка соприкосновения касательной к окружности радиуса R описывает по этой окружности некоторую дугу S, то касательная повертывается при этом на некоторый угол α = S/R. Следовательно, для окружности отношение α/S есть величина постоянная, равная 1/R, то есть К. Отношение α/S угла, составляемого касательными, проведенными в концах дуги S какой-либо кривой, к этой дуге называется средней К. Представим себе, что дуга S кривой уменьшается до совпадения ее концов в одну точку М, тогда отношение α/S стремится к некоторому пределу, который и называется К. в точке М. Окружность, К. которой выражается тем же самым числом как и упомянутый предел, называется кругом К.; радиус ее R — радиусом K. и самая К. кривой в точке М выражается величиной 1/R. Если кривая выражается уравнением f(x,y) = 0, то: 1/R = [d2y/dx2]/[(1 + (dy/dx)2)3/2] = [dx.d2y-dy.d2x]/ds3, где ds = √(dx2+ dy2).
Центр круга К. лежит на нормали точки М и его координаты определяются по формулам X = x — [y'(1 + y'2)]/y " Y = y + (1 + y'2)/y ", где y' = dy/dx; y " = d2y/dx2. К.кривых, не умещающихся в плоскости. В кривых таких как винтовая линия, которые описаны в пространстве, первой К. называется тоже предел отношения α/S причем:
КРИВИЗНА фото №1
Предел положения плоскости, проходящей через точки М и М' кривой и через касательную в точке М, при сближении M' с M назыв. плоскостью соприкосновения. Предел отношения угла, составляемого двумя бесконечно-близкими плоскостями соприкосновения, к соответственной бесконечно малой дуге называется второй К., выражаемой формулой: 1/T = [(d2y.d3zd2z.d3y)dx + (d2z.d3xd2x.d3z)dy + (d2x.d3yd2y.d3x)dz]/[(dy.d2zdz.d2y)2 + (dz.d2xdx.d2z)2 + (dx.d2ydy.d2z)2 ] К. линий, начерченных на поверхности. Эта К. определяется по теореме Менье. Если плоскость соприкосновения в точке M кривой S, начерченной на данной поверхности, составляет угол φ с плоскостью касательной в точке M к поверхности и если R есть радиус К. того нормального сечения, которое имеет с кривой S в точке M общую касательную, то радиус К. кривой S есть R.sinφ. Из всех нормальных сечений, проходящих через какую-либо точку M какой бы то ни было поверхности, существует два, для которых радиус К. достигает максимального или минимального значения — такие два сечения называются главными. Пусть R1 и R2 будут радиусы К. главных сечений, проведенных в точке M поверхности, пусть R есть радиус К. одного из промежуточных сечений и пусть α есть угол, составляемый плоскостью этого промежуточного сечения с сечением соответствующим R1, тогда имеем теорему Эйлера: 1/R = cos2α/R1 + sin2α/R2 Если обозначим чрез R' и R " радиусы каких-либо двух перпендикулярных между собой и проходящих через точку М сечений, то: 1/R' + 1/R " = constans. К. 1/R1 и 1/R2 главных сечений суть корни квадр. уравнения:
КРИВИЗНА фото №2
где p=dz/dx; q=dz/dy; r=d2z/dx2; s=d2z/dx.dy; t=d2z/dy2. Если деформировать (изгибать) нерастяжимую поверхность, то К. начерченных на ней линий изменяется, но К. проекции такой кривой на касательную плоскость для точки соприкосновения остается неизменной. Лиувилль называет эту К. геодезической. Линия, геодезическая К. которой на всем ее протяжении равна нулю, назыв. геодезической; все плоскости соприкосновения геодезической линии нормальны к поверхности. К. поверхностей. Понятие о К. на поверхности было расширено Гауссом следующим образом: начертим на данной поверхности произвольную замкнутую кривую С, ограничивающую некоторую площадь А; проведем из центра сферы, описанной радиусом, равным единице, прямые, параллельные нормалям поверхности, проведенным в точках кривой С. Эти прямые, выходящие из центра сфера, составят конус, который вырежет на сфере некоторую площадь А', которую Гаусс называет интегральной К. При уменьшении площади А до совпадения всех частей ее в одну точку предел отношения A'/A и назван Гауссом К. поверхности в точке М, в которую обратился контур A. Если R1 и R2 радиусы К. главных сечений, то К. поверхности равна 1/R1R2. Гаусс доказал при этом теорему: интегральная К. треугольника, образованного тремя геодезическими линиями, равна сумме углов этого криволинейного треугольника за вычетом двух прямых. Смотря по тому, имеют ли R1 и R2 одинаковые знаки или противоположные, — К. поверхности будет положительной или отрицательной. Если один из этих радиусов К. R1 или R2 обращается в бесконечность, то К. поверхности равна нулю. К. развертывающихся поверхностей во всех точках равна нулю.
Н. Делоне.


Найдено 99 изображений:

Изображения из описаний на этой странице
найдено в "Большой Советской энциклопедии"
(матем.)
        величина, характеризующая отклонение кривой (поверхности) от прямой (плоскости). Отклонение дуги MN кривой L от касательной МР в точке М можно охарактеризовать с помощью т. н. средней кривизны kcp этой дуги, равной отношению величины ее угла между касательными в точках М и N к длине Δs дуги MN:
         КРИВИЗНА фото №1
         Для дуги окружности средняя кривизна равна обратной величине радиуса этой окружности и, т. о., наглядно характеризует степень искривлённости окружности — с уменьшением радиуса увеличивается искривлённость дуги.
         Предельное значение средней кривизны при стремлении точки N кривой к точке М, т. е. при Δs→0, называется кривизной k кривой L в точке М:
         КРИВИЗНА фото №2
        Величина R, обратная кривизне, обычно называется радиусом кривизны кривой L в точке М.
         Если кривая L является графиком функции у = f (x), то кривизна k этой кривой может быть вычислена по формуле
         КРИВИЗНА фото №3
        Кривизна k кривой L представляет собой, вообще говоря, функцию длины дуги s, отсчитываемой от некоторой точки М этой кривой. Если для двух плоских кривых L1 и L2 К. как функции длины дуги одинаковы, то кривые L1 и L2 конгруэнтны — они могут быть совмещены движением. Поэтому задание К. плоской кривой как функции длины дуги обычно называется натуральным (внутренним) уравнением этой кривой.
         Для характеристики отклонения пространственной кривой L от плоскости вводят понятие т.н. кручения (См. Кручение), которое иногда называют второй К. Кручение σ в точке М кривой определяется как предел отношения угла β между соприкасающимися плоскостями (См. Соприкасающаяся плоскость) к кривой в точках М и N к длине Δs дуги MN при стремлении точки N к М:
         КРИВИЗНА фото №4
        При этом угол β считается положительным, если поворот соприкасающейся плоскости в N при стремлении N к М происходит против часовой стрелки при наблюдении из точки М. К. и кручение, заданные как функции длины дуги, определяют кривую L с точностью до положения в пространстве.
         Исследование отклонения поверхности от плоскости может быть проведено следующим образом. Через нормаль в данной точке М поверхности проводят всевозможные плоскости. Сечения поверхности этими плоскостями называют нормальными сечениями, а кривизны нормальных сечений в точке М — нормальными кривизнами поверхности в этой точке. Максимальная и минимальная из нормальных кривизн в данной точке М именуются главными кривизнами. Если k1 и к2 главные кривизны, то величины K=k1․k2 и Н = 1/ 2(k1 + k2) называют соответственно полной кривизной (См. Полная кривизна) (или гауссовой кривизной) и средней кривизной (См. Средняя кривизна) поверхности в точке М. Эти К. поверхности определяют нормальные К., поэтому могут служить характеристикой отклонения поверхности от плоскости. В частности, если К = 0 и Н = 0 во всех точках поверхности, то поверхность представляет собой плоскость.
         Полная К. не меняется при изгибаниях поверхности (деформациях поверхности, не меняющих длин линий на ней). Если, например, полная К. равна нулю во всех точках поверхности, то каждый достаточно малый её кусок может быть изогнут на плоскость. Полная К. на поверхности без обращения к объемлющему пространству составляет объект т. н. внутренней геометрии поверхности. Средняя К. связана с внешней формой поверхности.
         Понятие К. обобщается на объекты более общей природы. Например, понятие К. возникает в т. н. римановых пространствах (См. Риманово пространство), представляя собой меру отклонения этих пространств от евклидовых.
         Лит.: Бляшке В., Дифференциальная геометрия и геометрические основы теории относительности Эйнштейна, пер. с нем., т.1, М.— Л., 1935; Рашевский П. К., Курс дифференциальной геометрии, 4 изд., М., 1956; Погорелов А. В., Дифференциальная геометрия, 5 изд., М., 1969.
         Э. Г. Позняк.
        КРИВИЗНА фото №5
        Рис. к ст. Кривизна.


найдено в "Толковом словаре Ожегова"
КРИВИЗНА, -ы, ж. 1. см. кривой. 2. Кривое, изогнутое место. К. стола.
найдено в "Новом толково-словообразовательном словаре русского языка"
кривизна ж. 1) Отвлеч. сущ. по знач. прил.: кривой (2*1). 2) Изогнутая, искривленная часть чего-л.



найдено в "Русско-английском словаре"
кривизна
ж.
curvature; crookedness




найдено в "Словаре синонимов"
кривизна Изгиб, загиб, сгиб, дуга, извилина, лука, излучина, колено, круг, овал, поворот, заворот, складка. Река дала колено... Словарь русских синонимов и сходных по смыслу выражений.- под. ред. Н. Абрамова, М.: Русские словари,1999. кривизна изгиб, загиб, сгиб, дуга, извилина, лука, излучина, колено, круг, овал, поворот, заворот, складка, искривление, искривленность; кривина, флексура Словарь русских синонимов. кривизна сущ. • искривление • искривленность Словарь русских синонимов. Контекст 5.0 — Информатик.2012. кривизна сущ., кол-во синонимов: 23 • выгиб (16) • глупость (125) • дуга (19) • заворот (26) • загиб (20) • извилина (21) • изгиб (42) • излучина (17) • искривление (39) • искривленность (25) • козинец (1) • колено (20) • косость (5) • криватень (1) • кривина (2) • круг (58) • лука (25) • овал (6) • поворот (48) • погиб (6) • погнутость (7) • сгиб (13) • флексура (2) Словарь синонимов ASIS.В.Н. Тришин.2013. . Синонимы: выгиб, дуга, заворот, загиб, извилина, изгиб, излучина, искривление, искривленность, колено, косость, криватень, кривина, круг, лука, овал, поворот, сгиб, флексура Антонимы: прямизна
T: 144