Значение слова "ТРАНСЛЯЦИЯ" найдено в 134 источниках

ТРАНСЛЯЦИЯ

найдено в "Толковом словаре Ожегова"
ТРАНСЛЯЦИЯ, -и, ж. 1. см. транслировать. 2. То, что транслируется.Интересная т. II прил. трансляционный, -ая, -ое.

Найдено 1 изображение:

Изображения из описаний на этой странице
найдено в "Новом толково-словообразовательном словаре русского языка"
трансляция ж. 1) Передача на дальнее расстояние речи, музыки, изображения средствами радио или телевидения, осуществляемая непосредственно с места действия. 2) То, что передается таким способом.



найдено в "Русско-английском словаре"
трансляция
ж.
transmission, broadcast; (через усилительную установку) relay




найдено в "Словаре синонимов"
трансляция передача, телепередача, перевод, биосинтез, педерача Словарь русских синонимов. трансляция передача Словарь синонимов русского языка. Практический справочник. — М.: Русский язык.З. Е. Александрова.2011. трансляция сущ. • передача Словарь русских синонимов. Контекст 5.0 — Информатик.2012. трансляция сущ., кол-во синонимов: 9 • аудиотрансляция (1) • биосинтез (3) • видеотрансляция (1) • педерача (4) • перевод (62) • передача (85) • радиотрансляция (2) • телепередача (7) • телетрансляция (3) Словарь синонимов ASIS.В.Н. Тришин.2013. . Синонимы: аудиотрансляция, биосинтез, видеотрансляция, педерача, перевод, передача, радиотрансляция, телепередача, телетрансляция
найдено в "Биологическом энциклопедическом словаре"
ТРАНСЛЯЦИЯ
(от лат. translatio — передача), синтез полипептидных цепей белков по матрице информационной РНК согласно генетич. коду; второй этап реализации генетич. информации в живых клетках. В процессе Т. информация о специфич. строении будущего белка, записанная в виде последовательности нуклеотидов в молекулах иРНК, переводится с нуклеотидного кода в определённую последовательность аминокислот в синтезируемых белках. Осуществляется сложным макромолекулярным комплексом, состоящим кроме иРНК из рибосом, транспортных РНК (тРНК), аминоацил-тРНК-синтетаз, белковых факторов инициации (начала), элонгации (удлинения, или наращивания, полипептида), терминации (окончания) Т. и др. Аминокислоты доставляются в рибосомы тРНК. На этапе инициации Т. меньшая субъединица рибосомы, инициаторная (у бактерий формилметиониловая) тРНК и факторы инициации «узнают» кодон-инициатор у 5'-конца иРНК (см. рис.). После этого присоединяется большая субъединица рибосомы и в ней начинается собственно синтез белка, к-рый происходит в 3 этапа: присоединение тРНК, образование пептидной связи и продвижение рибосомы на три нуклеотида — транслокация, после чего весь цикл повторяется. При узнавании кодонов-терминаторов белковые факторы терминации катализируют освобождение полипептидной цепи от рибосомы. При синтезе белка иРНК входит в состав полирибосомы (на ней одновременно ведут синтез от неск. до 100 рибосом). У прокариот полирибосомы образуются в ходе транскрипции, на иРНК, ещё связанной с ДНК. У эукариот синтез белка ограничен цитоплазмой.
ТРАНСЛЯЦИЯ фото ГТФ — гуанозинтрифосфат, ГДФ — гуанозиндифосфат; А — аденин, Г — гуанин, У — урацил, ф - метформил метионин, Фен — фенилаланин, Лиз — лизин.">

Схема трансляции у прокариот. Показаны: рибосомы, состоящие из малой (30S) и большой (50S) субъединиц: аминоацилированные тРНК; кодоны на иРНК (АУГ,УУУ, УАА), узнаваемые тРНК; факторы инициации (IF—1, IF—2, IF—3), элонгации (EF—Т, EF—G), терминации (RF —1, RF—2. RF-3). Цифрами указаны стадии синтеза белка: 1 — 3 — инициация, 4 — 6 — элонгация (4 — присоединение тРНК, 5 — образование пептидной связи, 6 — транслокация), 7 — терминация. ГТФ — гуанозинтрифосфат, ГДФ — гуанозиндифосфат; А — аденин, Г — гуанин, У — урацил, ф - метформил метионин, Фен — фенилаланин, Лиз — лизин.
.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. — 2-е изд., исправл. — М.: Сов. Энциклопедия, 1986.)
трансля́ция
синтез белков (полипептидов) на рибосомах с использованием в качестве матрицы информационной рибонуклеиновой кислоты (и-РНК); завершающий этап реализации генетической информации в живых клетках. В ходе трансляции информация, записанная в нуклеиновых кислотах в виде генетического кода, переводится в последовательность аминокислот в синтезируемых белках. При этом четырёхбуквенный нуклеотидный «язык» передаётся (лат. «трансляцио» – передача) «языком» двадцатибуквенным аминокислотным.
Трансляция – очень сложный процесс (гораздо более сложный, чем два других основных матричных синтеза – репликация итранскрипция). В нём участвуют все виды рибонуклеиновых кислот, 20 видов аминокислот, многочисленные ферменты, белковые факторы, регулирующие начало (инициацию), продолжение (элонгацию) и окончание (терминацию) процесса. Главный организующий центр трансляции – клеточный органоид рибосома. Удивительная точность взаимодействия всех участников синтеза обеспечивается высокой специфичностью ферментов и взаимным «узнаванием» молекул, основанном на образовании связей между комплементарными парами азотистых оснований: аденин—тимин (урацил) и гуанин—цитозин. Кроме того, одни ферменты способны исправлять случайные ошибки других.
В сильно упрощённом виде трансляция включает следующие стадии. Синтезированная в клеточном ядре в ходе транскрипции молекула и-РНК поступает в цитоплазму, претерпевает ряд модификаций и соединяется с рибосомой (в клетках прокариот, не разделённых на ядро и цитоплазму, и-РНК связывается с рибосомой сразу). Находящиеся в цитоплазме аминокислоты активируются взаимодействием с богатым энергией соединением – АТФ. Поскольку аминокислоты и и-РНК в силу их химического строения «не соответствуют» друг другу (не могут взаимодействовать), между ними существует своего рода переходник – транспортные РНК (т-РНК). Активированные специальным ферментом аминокислоты с участием этого же фермента (для каждого вида аминокислоты – своего) соединяются т-РНК, также только со своей. Далее т-РНК, несущая аминокислоту, поступает на рибосому и своим антикодоном (тройкой нуклеотидов), узнав на и-РНК свой кодон (комплентарную тройку нуклеотидов), закрепляется на и-РНК на единственном свободном месте рядом со строящейся полипептидной цепью. Специальный фермент рибосомы образует пептидную связь между аминокислотой и синтезируемым полипептидом, а рибосома сдвигается по цепи и-РНК на один кодон, освобождая место для присоединения следующей т-РНК. Так происходит наращивание полипептидной цепи до тех пор, пока рибосома не дойдёт до «стоп-кодона». Получив сигнал окончания синтеза, белковые факторы терминации освобождают полипептидную цепь от рибосомы. Таким образом кодоны и-РНК определяют последовательность аминокислот в белке, а следовательно, его строение, свойства и активность.
По мере продвижения рибосомы вдоль и-РНК её начальный (инициирующий) участок освобождается, с ним соединяется ещё одна рибосома. Одновременно на одной молекуле и-РНК могут «работать» от нескольких единиц до нескольких десятков рибосом, используя одну матрицу для синтеза сразу многих копий молекулы полипептида (белка). Такой комплекс и-РНК со многими рибосомами называется полирибосомой или полисомой.
В зависимости от потребностей клетки или организма в определённых белках (ферментах) их синтез контролируется как генами, так и другими механизмами регуляции, действующими на разных этапах реализации генетической информации, в том числе и на этапе трансляции.
Клеточные органоиды хлоропласты и митохондрии имеют собственный, не зависящий от ядра аппарат белкового синтеза.
.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)

Синонимы:
аудиотрансляция, биосинтез, видеотрансляция, педерача, перевод, передача, радиотрансляция, телепередача, телетрансляция



найдено в "Химической энциклопедии"

(от лат. translatio-передача), программируемый генами процесс синтеза белка. Посредством Т. осуществляется реализация генетич. информации нуклеиновых к-т (см. Генетический код).

По совр. представлениям, исходный ген в виде ДНК непосредственно транслироваться не может; для Т. он должен быть сперва транскрибирован-переписан (см. Транскрипция )-в форме молекул матричных рибонуклеиновых кислот (мРНК) и именно последняя связывается с рибосомой и транслируется.

В ходе Т. последовательность нуклеотидов мРНК определяет последовательность остатков аминокислот в синтезируемом полипептиде; происходит как бы перевод с языка нуклеотидной последовательности гена на язык аминокислотной последовательности белка. Считается, что аминокислотная последовательность синтезируемого на рибосоме полипептида однозначно задает пространственную структуру белка через процесс сворачивания (фолдинга), идущего одновременно с Т. (котрансляционное сворачивание) или по ее завершении (посттрансляционное сворачивание). Кроме того, в формировании конечной структуры функцион. белка могут принимать участие процессы ко- и посттрансляционных модификаций (см. Модификация белков).

Т. каждой молекулы мРНК рибосомой разделяется на три четкие последоват. стадии-инициацию, элонгацию полипептида (собственно Т.) и терминацию (см. рис. в ст. Рибосома). Цепь мРНК транслируется (считывается) по направлению от 5'-конца к 3'-концу (см. Нуклеиновые кислоты). Полипептид элонгируется (растет) от N-конца к С-концу.

Т. начинается со строго фиксир. точки в цепи мРНК (а отнюдь не с начала самой цепи РНК). Точный выбор рибосомой стартовой точки определяет не только первую (N-концевую) аминокислоту в синтезируемом полипептиде, но и всю последующую разбивку нуклеотидной последовательности мРНК на триплеты (кодоны), т. е. правильную фазу (рамку) считывания, и, соотв., правильный набор остатков аминокислот в синтезируемом полипептиде.Для этого существует спец. механизм инициации Т., в к-ром принимают участие: инициаторный кодон и предшествующая ему последовательность мРНК, малая субчастица рибосомы, инициаторная метионил-тРНК [N-формилметионил-тРНКр у прокариот (бактерии и синезеленые водоросли) и метионил-тРНКр у эукариот (все остальные организмы); тРНК-сокр. обозначение транспортных рибонуклеиновых кислот], набор белковых факторов инициации (IF-1, IF-2 и IF-3 у прокариот и около десятка факторов-от eIF-1 до eIF-4F и eIF-5-y эукариот) и гуанозинтрифосфат (ГТФ), а также АТФ у эукариот.

Перед инициацией рибосома должна диссоциировать на составляющие ее субчастицы-малую (30S у прокариот и 40S у эукариот) и большую (50S у прокариот и 60S у эукариот):

70S : 30S; + 50S 80S : 40S;+60S

Своб. малая субчастица связывает на себе часть факторов инициации (кстати, способствующих вышеуказанной диссоциации). При участии фактора инициации IF-2 или eIF-2 и ГТФ в комплекс с малой субчастицей входит инициаторная (формил)метионил-тРНКр (F в нижнем индексе обозначает, что данная тРНК является инициаторной).

У прокариот малая субчастица рибосомы имеет сродство к короткой полипуриновой (см. Пуриновые основания) последовательности мРНК (напр., GAGG; G и А-соотв. остатки гуанозина и аденозина), находящейся за неск. нуклеотидов перед инициаторным кодовом AUG (реже GUG; U-остаток уридина), так что рибосомная 30S частица фиксирует эту предынициаторную последовательность (наз. также последовательностью Шайна-Дальгарно), а антико-дон инициаторной тРНК взаимод. с инициаторным кодо-ном.

У эукариот рибосомная 40S частица, несущая ряд факторов инициации и метионил-тРНКр, связывается преимущественно с 5'-концом цепи мРНК (как правило, кэпирован-ным), а затем скользит по цепи в направлении к 3'-концу без Т., потребляя АТФ, пока не натолкнется на триплет AUG, спаривающийся с антикодоном тРНКр и служащий инициаторным кодовом.

Т. обр., в обоих случаях устанавливается стартовая точка Т. (точка отсчета триплетов). Далее фиксированная на ини-циаторном кодоне малая рибосомная субчастица присоединяет к себе большую рибосомную субчастицу; это событие сопровождается гидролизом ГТФ на факторе инициации IF-2 или eIF-2, уходом этого фактора и гуанозиндифосфата (ГДФ) с рибосомной частицы. Теперь на ишщиаторном кодоне находится полная (70S или 80S) рибосома, готовая воспринять аминоацил-тРНК (Аа-тРНК), соответствующую следующим нуклеотидным триплетам мРНК (рис. 1).

Элонгационный цикл начинается с поступления в рибосому Аа-тРНК при наличии там инициаторной (формил)ме-тионил-тРНКр (сразу после вышеописанной инициации) или пептидил-тРНК (если рассматривать любой промежут. шаг стадии элонгации) (рис. 2). Предварительно вне рибосомы Аа-тРНК взаимод. со спец. белком, наз. фактором элонгации Tu (EF-Tu) у прокариот или eEF-1 у эукариот; для взаимод. необходимо участие в этом комплексе молекулы ГТФ: Аа-тРНК + EF-Tu(eEF-l) + ГТФ :! Аа-тРНК

Синонимы:
аудиотрансляция, биосинтез, видеотрансляция, педерача, перевод, передача, радиотрансляция, телепередача, телетрансляция



T: 413