Значение слова "АТМОСФЕРНАЯ ТУРБУЛЕНТНОСТЬ" найдено в 8 источниках

АТМОСФЕРНАЯ ТУРБУЛЕНТНОСТЬ

найдено в "Энциклопедии "Авиация" (1998)"

Атмосфе́рная турбуле́нтность — одно из характерных свойств атмосферы Земли, состоящее в беспорядочном изменении давления, температуры воздуха, скорости и направления ветра (см. Турбулентность). Турбулентный режим способствует тепло- и влагообмену в атмосфере Земли; наблюдается в пограничном слое атмосферы, простирающемся над равнинами умеренных широт до высоты 1 км. Турбулентность обусловлена топографической неоднородностью поверхности Земли, её теплофизическими свойствами, приводящими к неравномерному и пространстве нагреванию (охлаждению), особенностями вертикальных профилей температуры и скорости воздушных потоков (см. Вертикальный разрез атмосферы).На высоте 50—150 м наблюдаются значительные вертикальные градиенты скорости ветра (см. Сдвиг ветра), порождающие динамическую турбулентность, или большие вертикальные градиенты температуры (летом), вызывающие термическую турбулентность. В этих условиях наблюдаются сильные горизонтальные и вертикальные порывы ветра, существенно влияющие на взлёт и посадку летательных аппаратов (см. Атмосферное возмущение). В свободной атмосфере (над пограничным слоем) воздушные течения, особенно в ясном небе в верхней тропосфере, могут быть также турбулизированными в областях струйных течений, где наблюдаются большие вертикальные градиенты скорости. Интенсивная А. т. вызывает болтанку летательного аппарата. Вероятность турбулентности при ясном небе в умеренных широтах составляет 10%, в том числе сильной около 0,4%, в нижней стратосфере до высоты 20—25 км — соответственно 1 и 0,05%. Толщина турбулентных зон тропосферы во много раз меньше горизонтальных размеров; в 80% случаев толщина не более 1000 м, а горизонтальные размеры меньше 150 км, в нижней стратосфере — соответственно 300 м и 80 км. Эти зоны всегда имеют резкие границы.

Развитие А. т. обусловлено динамическими и термическими причинами. Воздушное течение часто характеризуют безразмерной величиной, так называемым числом Ричардсона:

,

где g — ускорение свободного падения, Т — абсолютная температура, γa — адиабатический вертикальный градиент температуры (равный 0,01 К/м), γ — наблюдаемый вертикальный градиент температуры, β — вертикальный градиент средней скорости ветра (с учётом поворотов ветра в слое с высотой). Чаще всего турбулентность наблюдается при значениях Ri < 1/4.

Возникновение А. т. связано с потерей гидродинамической устойчивости потока и генерацией волновых возмущений, потерей устойчивости и вырождением волновых возмущений, генерацией турбулентности и диссипацией турбулентной энергии в теплоту. Знание характеристик А. т. необходимо для решения многих теоретических и практических задач в авиации.

Литература:

Монин А. С., Яглом А. М., Статистическая гидромеханика, ч. 1—2, М., 1965—67;

Турбулентность в свободной атмосфере, 2 изд., Л., 1976.

Н. З. Пинус.


найдено в "Энциклопедии техники"
Атмосферная турбулентность
— одно из характерных свойств атмосферы Земли, состоящее в беспорядочном изменении давления, температуры воздуха, скорости и направления ветра (см. Турбулентность). Турбулентный режим способствует тепло- и влагообмену в атмосфере Земли; наблюдается в пограничном слое атмосферы, простирающемся над равнинами умеренных широт до высоты 1 км. Турбулентность обусловлена топографической неоднородностью поверхности Земли, её теплофизическими свойствами, приводящими к неравномерному и пространстве нагреванию (охлаждению), особенностями вертикальных профилей температуры и скорости воздушных потоков (см. Вертикальный разрез атмосферы)).На высоте 50—150 м наблюдаются значительные вертикальные градиенты скорости ветра (см. Сдвиг ветра)), порождающие динамическую турбулентность, или большие вертикальные градиенты температуры (летом), вызывающие термическую турбулентность. В этих условиях наблюдаются сильные горизонтальные и вертикальные порывы ветра, существенно влияющие на взлёт и посадку летательных аппаратов (см. Атмосферное возмущение)). В свободной атмосфере (над пограничным слоем) воздушные течения, особенно в ясном небе в верхней тропосфере, могут быть также турбулизированными в областях струйных течений, где наблюдаются большие вертикальные градиенты скорости. Интенсивная А. т. вызывает болтанку летательного аппарата. Вероятность турбулентности при ясном небе в умеренных широтах составляет 10%, в том числе сильной около 0,4%, в нижней стратосфере до высоты 20—25 км — соответственно 1 и 0,05%. Толщина турбулентных зон тропосферы во много раз меньше горизонтальных размеров; в 80% случаев толщина не более 1000 м, а горизонтальные размеры меньше 150 км, в нижней стратосфере — соответственно 300 м и 80 км. Эти зоны всегда имеют резкие границы.
Развитие А. т. обусловлено динамическими и термическими причинами. Воздушное течение часто характеризуют безразмерной величиной, так называем числом Ричардсона:
Возникновение А. т. связано с потерей гидродинамической устойчивости потока и генерацией волновых возмущений, потерей устойчивости и вырождением волновых возмущений, генерацией турбулентности и диссипацией турбулентной энергии в теплоту. Знание характеристик А. т. необходимо для решения многих теоретических и практических задач в авиации.

Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия..1994.



найдено в "Метеорологическом словаре"
Особенность атмосферных течений, состоящая в том, что мгновенные скорости отдельных количеств воздуха (более крупных, чем молекулы) испытывают нерегулярные, случайные флюктуации. К средней скорости переноса воздуха присоединяются, таким образом, дополнительные флюктуационные скорости элементов турбулентности, по-разному ориентированные и находящиеся в быстром изменении. В связи с этим и другие характеристики воздуха, как давление, температура, плотность, влагосодержание, изменяются в пространстве и времени также нерегулярно. А. Т. можно непосредственно наблюдать, следя за падением снежинок при ветре или за распространением дыма из труб. Причина А. Т. — образование в атмосфере вихрей различных масштабов (от долей миллиметра и более). Переход от ламинарного, лишенного турбулентности, течения к турбулентному происходит при потере гидродинамической устойчивости потока, когда отношение сил инерции к силам вязкости (число Рейнольдса) превосходит некоторое критическое значение. А. Т. особенно значительна в слое трения и в областях струйных течений. К описанной динамической турбулентности присоединяется термическая турбулентность (конвекция), определяемая архимедовой силой .

В результате А. Т. происходит быстрая турбулентная диффузия, создающая турбулентный обмен свойств воздуха в вертикальном направлении, намного превосходящая молекулярную диффузию. А. Т. объясняются сравнительное постоянство состава воздуха с высотой, распространение в атмосфере водяного пара и коллоидных примесей, внутреннее трение (турбулентная вязкость) воздуха, порывистость и суточный ход ветра, распространение и распределение тепла в атмосфере (путем турбулентной теплопроводности), особенности форм облаков, рассеяние туманов, коагуляции капелек в облаках, так называемое дрожание воздуха и мерцание звезд и многое другое.

Кроме описанной мелкомасштабной А. Т. (микротурбулентности), существует А. Т. синоптического масштаба (макротурбулентность), элементами которой являются циклоны и антициклоны, осуществляющие междуширотный обмен воздуха, тепла, количества движения и пр. Различается также А. Т. в промежуточном масштабе (мезотурбулентность), связанная с грозовыми облаками, шквалами и т. п. Интенсивность мезотурбулентности сравнительно мала; в тропиках она больше, чем во внетропических широтах.

Более краткий синоним турбулентность имеет также и более общее значение, поскольку турбулентность свойственна и потоку воды и наблюдается не только в природе, но и в технических установках.


найдено в "Русско-чешском словаре"
• turbulence atmosféry
T: 75