Значение слова "РИККАТИ УРАВНЕНИЕ" найдено в 4 источниках

РИККАТИ УРАВНЕНИЕ

найдено в "Большой Советской энциклопедии"
        обыкновенное дифференциальное уравнение (См. Дифференциальные уравнения) 1-го порядка вида
         РИККАТИ УРАВНЕНИЕ фото №1
        где а, b, а — постоянные. Это уравнение впервые исследовалось Я. Риккати (1724); отдельные частные случаи рассматривались раньше. Д. Бернулли установил (1724—25), что уравнение (*) интегрируется в элементарных функциях, если а =2 или а = — 4kl (2k — 1), где k — целое число.Как доказал Ж. Лиувилль (1841), при других значениях а решение уравнения (*) нельзя выразить в квадратурах от элементарных функций; общее решение его может быть записано с помощью цилиндрических функций (См. Цилиндрические функции). Дифференциальное уравнение
         РИККАТИ УРАВНЕНИЕ фото №2
        где Р (х), Q (x), R (x) непрерывные функции, называется общим Р. у. [в отличие от него уравнение (*) называется специальным Р. у.]. При Р (х) = 0 общее Р. у. является линейным дифференциальным уравнением, при R (x) = 0 — так называемым Бернулли уравнением, которые интегрируются в конечном виде. Изучены также другие случаи интегрируемости общего Р. у.
         Лит.: Камке Э., Справочник по обыкновенным дифференциальным уравнениям, пер. с нем., 4 изд., М., 1971.


Найдено 37 изображений:

Изображения из описаний на этой странице
найдено в "Большой советской энциклопедии"

РИККАТИ УРАВНЕНИЕ, обыкновенное дифференциалъное уравнение 1-го порядка вида

где а, б, а - постоянные. Это уравнение впервые исследовалось Я. Риккати (1724); отдельные частные случаи рассматривались раньше. Д. Бернулли установил (1724-25), что уравнение (*) интегрируется в элементарных функциях, если а = -2 или а = -4k/(2k-1), где k - целое число. Как доказал Ж. Лиувилль (1841), при других значениях а решение уравнения (*) нельзя выразить в квадратурах от элементарных функций; общее решение его может быть записано с помощью цилиндрических функций. Дифференциальное уравнение

где Р(х), Q(x), R(x)- непрерывные функции, наз. общим Р. у. [в отличие от него уравнение (*) наз. специальным Р. у.]. При Pi(.r)=0 общее Р. у. является линейным дифференциальным уравнением, при R(x)=0 - т. н. Бернулли уравнением, к-рые интегрируются в конечном виде. Изучены также другие случаи интегрируемости общего Р. у. Лит.: Камке Э., Справочник по обыкновенным дифференциальным уравнениям, пер. с нем., 4 изд., М., 1971.





T: 48