Значение слова "АТОМНЫЕ РАДИУСЫ" найдено в 10 источниках

АТОМНЫЕ РАДИУСЫ

найдено в "Большой Советской энциклопедии"
        характеристики атомов, позволяющие приблизительно оценивать межатомные расстояния в веществах. Согласно квантовой механике, атом не имеет определённых границ, но вероятность найти электрон на данном расстоянии от ядра атома, начиная с некоторого расстояния, весьма быстро убывает. Поэтому можно приближённо приписать атому некоторый размер. Для всех атомов этот размер порядка 10-8 см, т. е. 1 Å или 0,1 нм. Опытные данные показывают, что, суммируя для атомов А и В значения величин, называются А. р., во многих случаях удаётся получить значение межатомного расстояния AB в химических соединениях и кристаллах, близкое к истинному. Это свойство межатомных расстояний, называется аддитивностью, оправдывает применение А.р. Последние подразделяются на металлические и ковалентные.
         За металлический радиус принимается половина кратчайшего межатомного расстояния в кристаллической структуре элемента-металла. Металлический радиус зависит от числа ближайших соседей атома в структуре (координационного числа К). Если принять А. р. при К = 12 (это значение К чаще всего встречается в металлах) за 100%, то А. р. при К = 8,6 и 4 составят 98,96 и 88% соответственно. А. р. металлов применяют для предсказания возможности образования и анализа строения сплавов и интерметаллических соединений. Так, близость А. р. — необходимое, хотя и недостаточное условие взаимной растворимости металлов по типу замещения: магний (А. р. 1,60 Å) в широких пределах образует твёрдые растворы с литием (1,55 Å) и практически не образует их с натрием и калием (1,89 Å и 2,36 Å). Аддитивность А. р. позволяет ориентировочно предсказывать параметры решёток интерметаллов (например, для тетрагональной структуры β-AlCr2, расчёт даёт а = 3,06 Å, с = 8,60 Å, соответствующие экспериментальные значения 3,00 Å и 8,63 Å).
         Ковалентные радиусы представляют собой половину длины ординарной связи Х — X, где Х — элемент-неметалл. Так, например, в случае галогенов А. р.— это половина межатомного расстояния в молекулах X2, для серы и селена — в молекулах X8, для углерода — это половина длины связи в кристаллической структуре алмаза или в молекулах предельных углеводородов. Повышение кратности связи (например, в молекулах бензола, этилена, ацетилена) приводит к уменьшению её длины, что иногда учитывают введением соответствующей поправки. Приблизительно выполняющаяся аддитивность ковалентных радиусов позволяет вычислить их значения и для металлов (из длин ковалентных связей Me — X, где Me — металл). В некоторых исследованиях, сравнивая экспериментально найденные расстояния Me — Х с суммами ковалентных радиусов и ионных радиусов (См. Ионные радиусы), судят о степени ионности связи. Однако межатомные расстояния Х—Х и Me — Х заметно зависят от валентного состояния атомов. Последнее уменьшает универсальность ковалентных радиусов и ограничивает возможность их применения. О связи А. р. элементов с их положением в периодической системе см. Периодическая система элементов Д. И. Менделеева.
         Лит.: Бокий Г. Б., Кристаллохимия, 2 изд., М., 1960; Жданов Г. С., Физика твердого тела, М., 1962; Китайгородский А. И., Органическая кристаллохимия, М., 1955; Bastiansen О., Тraetteberg M., The nature of bonds between carbon atoms, «Tetrahedron», 1962, v. 17, №3.
         П. М. Зоркий.


найдено в "Большой советской энциклопедии"

АТОМНЫЕ РАДИУСЫ, характеристики атомов, позволяющие приблизительно оценивать  межатомные расстояния в веществах. Согласно квантовой механике, атом не имеет определённых границ,но вероятность найти электрон на данном расстоянии от ядра атома, начиная с нек-рого расстояния, весьма быстро убывает. Поэтому можно приближённо приписать атому нек-рый размер. Для всех атомов этот размер порядка 10-8 см, т. е. 1 А или 0,1 нм. Опытные данные показывают, что, суммируя для атомов А и В значения величин, наз. А. р., во многих случаях удаётся получить значение межатомного расстояния АВ в хим. соединениях и кристаллах, близкое к истинному. Это свойство межатомных расстояний, наз. аддитивностью, оправдывает применение А. р. Последние подразделяются на металлические и ковалентные.

За металлич. радиус принимается половина кратчайшего межатомного расстояния в кристаллич. структуре элемента-металла. Металлич. радиус зависит от числа ближайших соседей атома в структуре (координационного числа К). Если принять А. р. при К = 12 (это значение К чаще всего встречается в металлах) за 100% , то А. р. при К=8, 6 и 4 составят 98, 96 и 88% соответственно. А. р. металлов применяют для предсказания возможности образования и анализа строения сплавов и интерметал-лич. соединений. Так, близость А. р.- необходимое, хотя и недостаточное условие взаимной растворимости металлов по типу замещения: магний (А. р. 1,60А) в широких пределах образует твёрдые растворы с литием (1,55 А) и практически не образует их с натрием и калием (1,89 А и 2,36 А). Аддитивность А. р. позволяет ориентировочно предсказывать параметры решёток интерметаллов (например, для тетрагональной структуры B-АlСr2, расчёт даёт а = 3,06 А, с = 8,60 А, соответствующие экспериментальные значения 3,00 А и 8,63 А). Ковалентные радиусы представляют собой половину длины ординарной связи X - X, где X - элемент-неметалл. Так, напр., в случае галогенов А. р.- это половина межатомного расстояния в молекулах Х2, для серы и селена - в молекулах Х8, для углерода - это половина длины связи в кристаллич. структуре алмаза или в молекулах предельных углеводородов. Повышение кратности связи (напр., в молекулах бензола, этилена, ацетилена) приводит к уменьшению её длины, что иногда учитывают введением соответствующей поправки. Приблизительно выполняющаяся аддитивность ковалент-ных радиусов позволяет вычислить их значения и для металлов (из длин ко-валентных связей Me - X, где Me - металл). В нек-рых исследованиях, сравнивая экспериментально найденные расстояния Me - X с суммами ковалентных радиусов и ионных радиусов, судят о степени ионности связи. Однако меж-

атомные расстояния X-X и Me - X заметно зависят от валентного состояния атомов. Последнее уменьшает универсальность ковалентных радиусов и ограничивает возможность их применения. О связи А. р. элементов с их положением в периодической системе см. Периодическая система элементов Д. И. Менделеева.

Лит.: Бокий Г. Б., Кристаллохимия, 2 изд., М., 1960; Жданов Г. С., физика твердого тела, М., 1962; Китайгородский А. И., Органическая кристаллохимия, М., 1955; Bastiansen О., Т г а е t-t e b e r g M-, The nature of bonds between carbon atoms, "Tetrahedron", 1962, v. 17, Mb 3. П. М. Зоркий.





найдено в "Физической энциклопедии"

хар-ки атомов, позволяющие приближённо оценивать межатомные (межъядерные) расстояния в молекулах и кристаллах. Атомы не имеют чётких границ, однако, согласно представлениям квант. механики, вероятность найти эл-н на определ. расстоянии от ядра быстро убывает с увеличением этого расстояния. Когда вводят понятие «А. р.», то считают, что подавляющая часть электронной плотности атома (90—98%) заключена в сфере этого радиуса. А. р. имеют порядок 0,1 нм, однако даже небольшие различия в А. р. атомов А и В могут определять структуру построенных из них кристаллов, сказываться на равновесной геометрии молекул и т. д. Опыт показывает, что кратчайшие расстояния в молекулах, тв. телах и жидкостях можно представить в виде суммы А. р. этих атомов. Однако аддитивность А. р. явл. весьма приближённой и выполняется не во всех случаях. В зависимости от того, какие силы действуют между атомами А и В (см. МЕЖАТОМНОЕ ВЗАИМОДЕЙСТВИЕ), различают металлические, ионные, ковалентные и ван-дер-ваальсовы А.
М е т а л л и ч е с к и е р а д и у с ы считаются равными половине кратчайшего расстояния между атомами в крист. структуре элемента-металла. Металлич. А. р. зависят от числа ближайших соседей атома в структуре (координац. числа K). Чаще всего встречаются крист. структуры металлов с К=12. Если принять А. р. при K=12 за единицу, то А. р. при К = 8, 6 и 4 составят соотв. 0,98, 0,96 и 0,88. Близость А. р.— необходимое (хотя и недостаточное) условие взаимной растворимости металлов по типу замещения. Так, жидкие К и Li обычно не смешиваются и образуют два жидких слоя, а К с Rb и Cs образует непрерывный ряд тв. р-ров (А. р. Li, К, Rb и Cs равны соотв.0,155; 0,236; 0,248 и 0,268 нм). Аддитивность А. р. позволяет с умеренной точностью предсказывать параметры кристаллических решёток интерметаллических соединений.
Ионные радиусы используют для приближённых оценок межъядерных расстояний в ионных кристаллах. Существует неск. систем ионных А. р., отличающихся значениями А. р. индивидуальных ионов, но приводящих к примерно одинаковым межъядерным расстояниям. Впервые работа по определению ионных А. р. была проделана в 20-х гг. 20 в. норв. геохимиком В. М. Гольдшмидтом, опиравшимся на опытные (рефрактометрические) значения радиусов F- и O2-(соотв. 0,133 и 0,132 нм). В системе Полинга за основу принимается значение радиуса кислородного иона 0,140 нм, а в наиб. надёжной системе Белова и Бокия — 0,136 нм. В ионных кристаллах, имеющих одинаковые координац. числа, отклонения от аддитивности А. р. обычно не превышают 0,001—0,002 нм.
Ковалентные радиусы определяются как половина длины одинарной хим. связи X—X, где X — элемент-неметалл. Для галогенов ковалентный А. р.— это половина межъядерного расстояния X—X в молекуле Х2, для S и Se — половина расстояния X—X в Х8, для углерода — половина кратчайшего расстояния С—С в кристалле алмаза. В результате находят, что ковалентные А. р. F, Cl, Br, I, S, Se и С равны соотв. 0,064; 0,099; 0,114; 0,133; 0,104; 0,117 и 0,077 нм. Ковалентный А. р. водорода принимают равным 0,030 нм (хотя половина длины связи Н — Н в молекуле Н2 равна 0,037 нм). Пользуясь правилом аддитивности ковалентных А. р., предсказывают длины связей (кратчайшие межъядерные расстояния) в многоат. молекулах. Напр., длины связей С—Н, С—F и С—Cl должны составлять соотв. 0,107; 0,141 и 0,176 нм, и они действительно примерно равны указанным значениям во многих органич. насыщ. молекулах (молекулах, не содержащих кратных связей). При наличии двойных и тройных связей углерод — углерод, когда в образовании связи участвуют две и три пары эл-нов, соответствующее межъядерное расстояние уменьшается на 0,021 и 0,034 нм.
Ван-дер-ваальсовы радиусы определяют эфф. размеры атомов благородных газов. Кроме того, ван-дер-ваальсовыми А. р. считают половину межъядерного расстояния между ближайшими одинаковыми атомами, не связанными между собой хим. связью, т. е. принадлежащими разным молекулам (напр., в мол. кристаллах). При сближении атомов на расстояние, меньшее суммы их ван-дер-ваальсовых А. р., возникает сильное межат. отталкивание. Ван-дер-ваальсовы А. р. находят, пользуясь принципом их аддитивности, из кратчайших межат. контактов соседних молекул в кристаллах. В среднем они на =0,08 .нм больше ковалентных А. р. Знание ван-дер-ваальсовых А. р. позволяет определить форму молекул, конформации молекул (см. ИЗОМЕРИЯ МОЛЕКУЛ) и их упаковку в молекулярных кристаллах. Согласно принципу плотной упаковки, молекулы, образуя кристалл, располагаются т. о., что «выступы» одной молекулы входят во «впадины» другой. Пользуясь этим принципом, можно интерпретировать имеющиеся кристаллографич. данные, а в ряде случаев и предсказывать структуру мол. кристаллов.

Физический энциклопедический словарь. — М.: Советская энциклопедия..1983.



T: 42