Значение слова "ПОЛИСАХАРИДЫ" найдено в 37 источниках

ПОЛИСАХАРИДЫ

найдено в "Энциклопедическом словаре Ф.А. Брокгауза и И.А. Ефрона"
см. Гидраты углерода.


Найдено 6 изображений:

Изображения из описаний на этой странице
найдено в "Большой Советской энциклопедии"
        высокомолекулярные соединения из класса углеводов (См. Углеводы); состоят из остатков моносахаридов (См. Моносахариды) (М), связанных гликозидными связями. Молекулярные массы П. лежат в пределах от нескольких тыс. (ламинарин, инулин) до нескольких млн. (гиалуроновая кислота, гликоген) и могут быть определены лишь ориентировочно, т.к. индивидуальные П. обычно являются смесями компонентов, различающихся степенью полимеризации. Химическая классификация П. основана на строении составляющих их М — гексоз (См. Гексозы) (глюкоза, галактоза, манноза), пентоз (См. Пентозы) (арабиноза, ксилоза), а также аминосахаров (глюкозамин, галактозамин), дезоксисахаров (рамноза, фукоза), уроновых кислот (См. Уроновые кислоты) и др. К гидроксильным (—ОН) и аминогруппам (—NH2;) моносахаридов в молекулах природных П. могут быть присоединены остатки кислот (уксусной, пировиноградной, молочной, фосфорной, серной) или спиртов (обычно метилового). Гомополисахариды построены из остатков только одного М (например, глюканы, фруктаны), гетерополисахариды — из остатков двух и более различных М (например, арабиногалактаны, глюкуроноксиланы). Многие распространённые П. или группы П. носят давно укоренившиеся название: Целлюлоза, Крахмал, Хитин, Пектиновые вещества и др.(иногда название П. связано с источником его выделения: нигеран — из гриба Aspergillus niger, одонталан — из водоросли Odontalia corymbifera).
         П., в отличие от др. классов биополимеров (См. Биополимеры), могут существовать как в виде линейных (а), так и разветвленных (б, в) структур (см. рис.).
         К линейным П. относятся целлюлоза, Амилоза, Мукополисахариды; Маннаны дрожжей и Камеди растений построены по типу б, а Гликоген, Амилопектин и галактан из виноградной улитки Helix pomatia — по типу в. Тип структуры П. определяет в значительной степени их физико-химические свойства, в частности растворимость в воде. Такие линейные регулярные (т. е. содержащие лишь один тип межмоносахаридной связи) П., как целлюлоза и хитин, нерастворимы в воде,
         ПОЛИСАХАРИДЫ фото
        т.к. энергия межмолекулярного взаимодействия выше энергии гидратации. Высокоразветвлённые, не обладающие упорядоченной структурой П. хорошо растворимы в воде. Химические реакции, известные в ряду М, — ацилирование, алкилирование, окисление гидроксильных и восстановление карбоксильных, а также введение новых групп и др., осуществимы и в случае П., хотя степень протекания реакций, как правило, ниже. Химически модифицированные П. зачастую обладают новыми, ценными для практики свойствами, отсутствовавшими у исходного соединения.
         Большинство П. устойчиво к щелочам; при действии кислот происходит их деполимеризация — гидролиз. В зависимости от условий кислотного гидролиза получают или свободные М или олигосахариды. Молекулы гетерополисахаридов, содержащих разные по кислотоустойчивости типы гликозидных связей, удаётся расщеплять избирательно. Для этой цели используют и специфические ферменты. Установление строения низкомолекулярных продуктов расщепления облегчает задачу установления строения самого П. Она сводится к определению структуры т. н. повторяющихся звеньев, из которых, как полагают (это доказано на ряде примеров), построены все П. Исследование вторичной структуры П. проводится с помощью физико-химических методов, в частности рентгеноструктурного анализа, который с успехом был применен, например, при исследовании целлюлозы.
         Весьма разнообразны биологические функции П. Крахмал и гликоген — резервные П. растений и животных; целлюлоза растений и хитин насекомых и грибов — опорные П.; Гиалуроновая кислота, присутствующая в оболочке яйцеклетки, синовиальной жидкости, стекловидном теле глаза, — высокоэффективный «смазочный материал»; камеди и слизи растений и капсулярные П. микроорганизмов выполняют защитную функцию; высокосульфатированный П. Гепарин ингибитор свёртывания крови. Фрагменты П. в смешанных углеводсодержащих биополимерах (гликопротеидах, липополисахаридах), присутствующих в поверхностном слое клетки, обусловливают специфические иммунные реакции организма. Внеклеточные П. и др. углеводсодержащие биополимеры обеспечивают межклеточное взаимодействие, скрепление клеток растений (пектиновые вещества) и животных (гиалин).
         Биосинтез П. протекает главным образом с участием нуклеозиддифосфатсахаров, служащих донорами моносахаридных (реже — дисахаридных) остатков, которые переносятся на соответствующие олигосахаридные фрагменты строящегося П. Биосинтез гетерополисахаридов происходит путём последовательного включения М из соответствующих нуклеозиддифосфатсахаров в полисахаридную цепь. Известен и др. механизм, реализующийся при построении П. бактериальных антигенов (См. Антигены); вначале с участием липидных и нуклеотидных переносчиков сахаров синтезируются специфические, т. н. повторяющиеся звенья, из которых под действием фермента полимеразы происходит синтез П. Разветвленные П. типа гликогена и амилопектина образуются путём внутримолекулярной ферментативной перестройки линейного П. Разрабатываются подходы к направленному химическому синтезу П.
         В живых организмах П., служащие основными резервами энергии, расщепляются внутри- и внеклеточными ферментами с образованием М и их производных, распадающихся далее с высвобождением энергии. Накопление и распад гликогена в печени человека и высших животных — способ регулирования уровня глюкозы (См. Глюкоза) в крови. Мономерные продукты образуются или непосредственно путём последовательного отщепления от молекулы П., или в результате ступенчатого распада П. с промежуточным образованием олигосахаридов. Многие П. (крахмал, целлюлоза, пектиновые вещества и др.) применяют в пищевой, химической и др. отраслях промышленности, в медицине. См. также статьи Углеводы, Углеводный обмен.
        
         Лит.: Стейси М., Баркер С., Углеводы живых тканей, пер. с англ., М., 1965; Химия углеводов, М., 1967.
         Л. В. Бакиновский.


найдено в "Большой советской энциклопедии"

ПОЛИСАХАРИДЫ, высокомолекулярные соединения из класса углеводов‘, состоят из остатков моносахаридов (М), связанных гликозидными связями. Мол. массы П. лежат в пределах от неск. тыс. (ламинарии, инулин) до неск. млн. (гиалуроновая к-та, гликоген) и могут быть определены лишь ориентировочно, т. к. индивидуальные П. обычно являются смесями компонентов, различающихся степенью полимеризации. Химич. классификация П. основана на строении составляющих их М - гексоз (глюкоза, галактоза, манноза), пентоз (арабиноза, ксилоза), а также аминосахаров (глю-козамин, галактозамин), дезоксисахаров (рамноза, фукоза), уроновых кислот и др. К гидроксильным (-ОН) и аминогруппам (-NH2) моносахаридов в молекулах природных П. могут быть присоединены остатки кислот (уксусной, пиро-виноградной, молочной, фосфорной, серной) или спиртов (обычно метилового). Гомополисахариды построены из остатков только одного М (напр., глю-каны, фруктаны), гетерополисахариды - из остатков двух и более различных М (напр., арабиногалактаны, глюку роноксиланы). Многие распространённые П. или группы П. носят давно укоренившиеся назв.: целлюлоза, крахмал, хитин, пектиновые вещества и др. (иногда назв. П. связано с источником его выделения: нигеран - из гриба Aspergillus niger, одонталан - из водоросли Odontalia corymbifera).

П., в отличие от др. классов биополимеров, могут существовать как в виде линейных (а), так и разветвлённых (б, в) структур (см. рис.).

К линейным П. относятся целлюлоза, амилоза, мукополисахариды‘, маннаны дрожжей и камеди растений построены по типу б, а гликоген, амилопектин и галактан из виноградной улитки Helix pomatia - по типу в. Тип структуры П. определяет в значит, степени их физико-химич. свойства, в частности растворимость в воде. Такие линейные регулярные (т. е. содержащие лишь один тип межмоносахаридной связи) П., как целлюлоза и хитин, нерастворимы в воде, т. к. энергия межмолекулярного взаимодействия выше энергии гидратации. Высокоразветвлённые, не обладающие упорядоченной структурой П. хорошо растворимы в воде. Химич. реакции, известные в ряду М, - ацилирование, алкили-рование, окисление гидроксильных и восстановление карбоксильных, а также введение новых групп и др., осуществимы и в случае П., хотя степень протекания реакций, как правило, ниже. Химич. модифицированные П. зачастую обладают новыми, ценными для практики свойствами, отсутствовавшими у исходного соединения.

Большинство П. устойчиво к щелочам; при действии кислот происходит их деполимеризация - гидролиз. В зависимости от условий кислотного гидролиза получают или свободные М или олигосахариды. Молекулы гетерополисахаридов, содержащих разные по кислотоустойчивости типы гликозидных связей, удаётся расщеплять избирательно. Для этой цели используют и специфич. ферменты. Установление строения низкомолекулярных продуктов расщепления облегчает задачу установления строения самого П. Она сводится к определению структуры т. н. повторяющихся звеньев, из к-рых, как полагают (это доказано на ряде примеров), построены все П. Исследование вторичной структуры П. проводится с помощью физико-химич. методов, в частности рентгеноструктурного анализа, к-рый с успехом был применён, напр., при исследовании целлюлозы.

Весьма разнообразны биологич. функции П. Крахмал и гликоген - резервные П. растений и животных; целлюлоза растений и хитин насекомых и грибов -опорные П.; гиалуроновая кислота, присутствующая в оболочке яйцеклетки, синовиальной жидкости, стекловидном теле глаза,- высокоэффективный -"смазочный материал"; камеди и слизи растений и капсулярные П. микроорганизмов выполняют защитную функцию; высоко-сульфатированный П. гепарин - ингибитор свёртывания крови. Фрагменты П. в смешанных углеводсодержащих биополимерах (гликопротеидах, липополи-сахаридах), присутствующих в поверхностном слое клетки, обусловливают спе-цифич. иммунные реакции организма. Внеклеточные П. и др. углеводсодержащие биополимеры обеспечивают межклеточное взаимодействие, скрепление клеток растений (пектиновые вещества) и животных (гиалин).

Биосинтез П. протекает гл. обр. с участием нуклеозиддифосфатсахаров, служащих донорами моносахаридных (реже - дисахаридных) остатков, к-рые переносятся на соответств. олигосахаридные фрагменты строящегося П. Биосинтез гетерополисахаридов происходит путём последоват. включения М из соответств. нуклеозиддифосфатсахаров в полисаха-ридную цепь. Известен и др. механизм, реализующийся при построении П. бактериальных антигенов‘, вначале с участием липидных и нуклеотидных переносчиков Сахаров синтезируются специфич., т. н. повторяющиеся звенья, из к-рых под действием фермента полимеразы происходит синтез П. Разветвлённые П. типа гликогена и амилопектина образуются путём внутримолекулярной ферментативной перестройки линейного П. Разрабатываются подходы к направленному химич. синтезу П.

В живых организмах П., служащие осн. резервами энергии, расщепляются внутри- и внеклеточными ферментами с образованием М и их производных, распадающихся далее с высвобождением энергии. Накопление и распад гликогена в печени человека и высших животных -способ регулирования уровня глюкозы в крови. Мономерные продукты образуются или непосредственно путём последовательного отщепления от молекулы П., или в результате ступенчатого распада П. с промежуточным образованием олигосахаридов. Мн. П. (крахмал, целлюлоза, пектиновые вещества и др.) применяют в пищ., химич. и др. отраслях пром-сти, в медицине. См. также статьи Углеводы, Углеводный обмен.

Лит.: Стейси М., Баркер С., Углеводы живых тканей, пер. с англ., М., 1965; Химия углеводов, М., 1967.

Л. В. Бакиновский.





найдено в "Энциклопедическом словаре"
Полисахариды — см. Гидраты углерода.



T: 118