Значение слова "АЛЬДЕГИДЫ" найдено в 24 источниках

АЛЬДЕГИДЫ

найдено в "Энциклопедическом словаре Ф.А. Брокгауза и И.А. Ефрона"
Альдегиды представляют значительную и важную группу органических соединений, члены которой хотя и не часто встречаются в отдельном состоянии в природе, но без сомнения играют чрезвычайно существенную роль в различных физиологических процессах как животного, так и растительного царства. Название свое эти вещества получили от наиболее изученного и прежде других ставшего известным обыкновенного, или уксусного, альдегида (см. это сл.). По своему положению в общей системе органических соединений альдегиды занимают промежуточное, но вполне определенное место между первичными алкоголями и соответствующими им кислотами (см. Окисление). Обозначая общий состав первич. алкоголей формулой R-CH2(ОН) (где R — органический радикал, остаток), кислот — R-CO(ОН), общий состав альдегидов выразится формулой R-COH. Содержание группы СОН (или Н-С-О) и является характеристичной для всех альдегидов, каков бы ни был состав радикала R. Кроме альдегидов R-COH, иначе одноатомных, известны также и такие, в которых группа СОН повторяется и не один раз (многоатомные альдегиды). Приведем для примера следующие: муравейный, или метиловый, альдегид HCOH; обыкновенный, или уксусный, СН3СОН; валерьяновый альд. C4H9COH; акриловый (акролеин) C2H3COH; бензойный (масло горьких миндалей) C6H5COH; щавелевый (глиоксил) АЛЬДЕГИДЫ фото №1
ванилин АЛЬДЕГИДЫ фото №2
виноградный сахар CH2OH(CHOH)4COH и др. — Общие всем альдегидам свойства, обусловливающиеся содержанием в них группы СОН, весьма разнообразны, и из них мы укажем только на главнейшие: 1) все альдегиды при действии окисляющих веществ легко фиксируют один атом кислорода на каждую группу СОН, превращаясь при этом в соответствующие кислоты, причем их группа СОН изменяется в СО(ОН); 2) все альдегиды реагируют с выделяющимся водородом, присоединяя на каждую группу СОН два атома водорода и превращаясь при этом в первичные алкоголи, т.е. группа СОН переходит в CH2OH. Способность альдегидов к прямым присоединениям более или менее резко проявляется и в отношении их ко многим другим реактивам; так, например, они присоединяют аммиак и кислые сернистокислые соли; есть данные полагать, что альдегиды присоединяют к себе многие кислоты, соли, воду и проч. и проч. То же стремление к реакциям прямого присоединения обусловливает, по всей вероятности, и способность к соединению их частиц друг с другом, что всего резче выражается у простейших альдегидов. Это последнее явление в зависимости от условий превращения дает начало или продуктам уплотнения (полимеризации), напоминающим по своим свойствам аллотропические изменения кислорода, серы и фосфора (см. аллотропия), или же продуктам конденсации, не имеющим уже способности переходить в прежние частицы. Вообще класс альдегидов по необычайному разнообразию и числу превращений довольно резко отличается от всех других классов химических соединений. Из общих способов образования альдегидов укажем: во-первых, на умеренное окисление первичных спиртов, и во-вторых, на восстановление органич. кислот (т. е. солей) при перегонке их с муравейнокислою известью. В природе, в особенности в растениях, встречаются представители рассматриваемой группы самого разнообразного состава и различной степени сложности. Существуют указания на присутствие в зеленых частях растений простейшего из альдегидов — муравейного СН2О; другие, как бензойный, ванилин, встречаются в виде сложных сочетаний с сахаристым началом (в виде глюкозидов, см. это сл.); наконец, одной из глюкоз, виноградному сахару, приписывают состав сложного альдегида. Способность альдегидов легко вступать во взаимодействие с самыми разнообразными деятелями, склонность их к окислению, восстановлению и в особенности к конденсации не только друг с другом, но и с целой массой других органических веществ давало иногда повод некоторым биологам приписывать динамохимические свойства живой плазмы — присутствию в ней веществ с альдегидной группировкой (Löew).


Найдено 6 изображений:

Изображения из описаний на этой странице
найдено в "Большой Советской энциклопедии"
        класс органических соединений, содержащих карбонильную группу
         АЛЬДЕГИДЫ фото №1
        связанную c органическим радикалом (R) и с атомом водорода,
         АЛЬДЕГИДЫ фото №2
         Свойства А. во многом сходны со свойствами кетонов, также содержащих карбонильную группу, но связанную с двумя радикалами, R2CO. Названия «А.» обычно производят от названий соответствующих кислот. Так, муравьиной кислоте HCOOH соответствует муравьиный альдегид, или формальдегид HCHO; уксусной кислоте — уксусный альдегид, или ацетальдегид CH3CHO.
         Из сопоставления формул спиртов RCH2OH, альдегидов RCHO и кислот RCOOH следует, что по степени окисленности А. занимают промежуточное положение между этими соединениями. С этим связаны некоторые способы их получения и химические свойства. Так, при окислении первичных спиртов или при осторожном восстановлении хлорангидридов кислот образуются А.:
         RCH2OH + O → RCHO + H2O;
         RCOCI + H2 → RCHO + HCI.
         Промежуточному положению А. отвечает и их способность к реакциям окисления-восстановления; например, в присутствии спиртового раствора едкой щёлочи А. превращаются в смесь спирта и кислоты (см. Канниццаро реакция):
         2C6H5CHO → C6H5CH2OH + C6H5COOH.
         А. могут быть получены также пиролизом смешанных кальциевых солей муравьиной и какой-либо другой карбоновой кислоты:
         RCOOCaOOCH → CaCO3 + RCHO.
         Осторожным окислением ароматических соединений, содержащих метильную группу, получают ароматический А.
         АЛЬДЕГИДЫ фото №3
         Техническое значение имеет аналогичный способ получения простейшего ненасыщенного А.— Акролеина из пропилена:
         АЛЬДЕГИДЫ фото №4
         Метод синтеза ацетальдегида, имеющий промышленное значение, состоит в гидратации ацетилена в присутствии солей ртути (см. Кучерова реакция):
         HC ≡ CH + H2O → CH3CHO.
         А. склонны к полимеризации; формальдегид, например, легко превращается в пара-формальдегид, ацетальдегид — в циклический тример, т. н. паральдегид. При конденсации 2 молей А. образуются альдоли:
         2CH3CHO → CH3CH(OH)CH2CHO
        (см. Альдольная конденсация), которые с отщеплением воды могут образовать ненасыщенные альдегиды:
         CH3CH(OH)CH2CHO → CH3CH = CHCHO + H2O
        (см. Кротоновая конденсация).
         А. легко вступают за счёт карбонильной группы во многие реакции присоединения и замещения. Так, с HCN они образуют циангидрины: RCH(OH)CN. Аналогично они реагируют с бисульфитом натрия, аминами и др. При действии гидроксиламина или гидразинов А. дают соответственно оксимы RCH = NOH и гидразоны RCH = N—NH3.
         А. широко применяют в производстве феноло-альдегидных смол (См. Феноло-альдегидные смолы), как душистые вещества (Ванилин, Цитраль и др.), как полупродукты синтеза др. веществ, например CH3CHO — для синтеза уксусной кислоты CH3COOH и этилацетата CH3COOC2H5 (см. Тищенко реакция), а также в синтезе олефинов и полиенов (см. Виттига реакция).
         Я. Ф. Комиссаров.


найдено в "Новом толково-словообразовательном словаре русского языка"
альдегиды мн. Органические соединения, являющиеся продуктом неполного окисления спирта (в химии).



найдено в "Энциклопедическом словаре"
Альдегиды — Альдегиды представляют значительную и важную группу органических соединений, члены которой хотя и не часто встречаются в отдельном состоянии в природе, но без сомнения играют чрезвычайно существенную роль в различных физиологических процессах как животного, так и растительного царства. Название свое эти вещества получили от наиболее изученного и прежде других ставшего известным обыкновенного, или уксусного, альдегида (см. это сл.). По своему положению в общей системе органических соединений альдегиды занимают промежуточное, но вполне определенное место между первичными алкоголями и соответствующими им кислотами (см. Окисление). Обозначая общий состав первич. алкоголей формулой R-СН 2 (ОН) (где R — органический радикал, остаток), кислот — R-СО(ОН), общий состав альдегидов выразится формулой R-СОН. Содержание группы СОН (или Н-С-О) и является характеристичной для всех альдегидов, каков бы ни был состав радикала R. Кроме альдегидов R-СОН, иначе одноатомных, известны также и такие, в которых группа СОН повторяется и не один раз (многоатомные альдегиды). Приведем для примера следующие: муравейный, или метиловый, альдегид HСОН; обыкновенный, или уксусный, СН 3 СОН; валерьяновый альд. C 4H9COH; акриловый (акролеин) C 2H3COH; бензойный (масло горьких миндалей) C 6H5COH; щавелевый (глиоксил); ванилин ; виноградный сахар CH2OH(CHOH)4 COH и др. — Общие всем альдегидам свойства, обусловливающиеся содержанием в них группы СОН, весьма разнообразны, и из них мы укажем только на главнейшие: 1) все альдегиды при действии окисляющих веществ легко фиксируют один атом кислорода на каждую группу СОН, превращаясь при этом в соответствующие кислоты, причем их группа СОН изменяется в СО(ОН); 2) все альдегиды реагируют с выделяющимся водородом, присоединяя на каждую группу СОН два атома водорода и превращаясь при этом в первичные алкоголи, т. е. группа СОН переходит в CH 2 OH. Способность альдегидов к прямым присоединениям более или менее резко проявляется и в отношении их ко многим другим реактивам; так, например, они присоединяют аммиак и кислые сернистокислые соли; есть данные полагать, что альдегиды присоединяют к себе многие кислоты, соли, воду и проч. и проч. То же стремление к реакциям прямого присоединения обусловливает, по всей вероятности, и способность к соединению их частиц друг с другом, что всего резче выражается у простейших альдегидов. Это последнее явление в зависимости от условий превращения дает начало или продуктам уплотнения (полимеризации), напоминающим по своим свойствам аллотропические изменения кислорода, серы и фосфора (см. аллотропия), или же продуктам конденсации, не имеющим уже способности переходить в прежние частицы. Вообще класс альдегидов по необычайному разнообразию и числу превращений довольно резко отличается от всех других классов химических соединений. Из общих способов образования альдегидов укажем: во-первых, на умеренное окисление первичных спиртов, и во-вторых, на восстановление органич. кислот (т. е. солей) при перегонке их с муравейнокислою известью. В природе, в особенности в растениях, встречаются представители рассматриваемой группы самого разнообразного состава и различной степени сложности. Существуют указания на присутствие в зеленых частях растений простейшего из альдегидов — муравейного СН 2 О; другие, как бензойный, ванилин, встречаются в виде сложных сочетаний с сахаристым началом (в виде глюкозидов, см. это сл.); наконец, одной из глюкоз, виноградному сахару, приписывают состав сложного альдегида. Способность альдегидов легко вступать во взаимодействие с самыми разнообразными деятелями, склонность их к окислению, восстановлению и в особенности к конденсации не только друг с другом, но и с целой массой других органических веществ давало иногда повод некоторым биологам приписывать динамохимические свойства живой плазмы — присутствию в ней веществ с альдегидной группировкой (L öew).



T: 44