Значение слова "АСТРОНОМИЧЕСКИЕ ИНСТРУМЕНТЫИ ПРИБОРЫ" найдено в 1 источнике

АСТРОНОМИЧЕСКИЕ ИНСТРУМЕНТЫИ ПРИБОРЫ

найдено в "Большой советской энциклопедии"

АСТРОНОМИЧЕСКИЕ ИНСТРУМЕНТЫ И ПРИБОРЫ, аппаратура для выполнения астрономических наблюдений и их обработки. А. и. и п. можно подразделить на наблюдательные инструменты (телескопы), светоприёмную и анализирующую аппаратуру, вспомогательные приборы для наблюдений, приборы времени, лабораторные приборы, вспомогательные счетно-решающие машины и демонстрационные приборы.

Оптич. телескопы служат для собирания света исследуемых небесных светил и построения их изображения. По оптич. схемам они делятся на зеркальные системы - рефлекторы (или катоптрические системы), линзовые - рефракторы (или диоптрические системы) и смешанные зеркально-линзовые (катодиоптриче-ские)системы, к к-рым относятся Шмидта телескоп, Максутова телескоп и др. По назначению телескопы разделяются на: инструменты для выполнения широкого круга астрофизич. исследований звёзд, туманностей, галактик, а также планет и Луны - в основном крупные рефлекторы, оснащённые кассетами, спектрографами, электрофотометрами; инструменты для одноврем. фотографирования больших участков неба (размером до 30X30°)-широкоугольные телескопы Максутова или Шмидта, а также широкоугольные астрографы типа фотографич. рефракторов; астрометрич. инструменты для высокоточных измерений координат небесных объектов и моментов времени прохождения их через меридиан; солнечные телескопы для изучения физ. процессов, происходящих на Солнце; метеорные камеры, камеры для фотографирования искусств. спутников Земли, камеры для регистрации сев. сияний и др. специальные телескопы. Астрономич. исследования в диапазоне радиочастот ведутся с помощью радиотелескопов. Крупнейший в мире оптич. телескоп сер. 20 в.-5-м рефлектор Маунт-Пало-марской обсерватории (США). В 1968 в СССР на Сев. Кавказе начался монтаж рефлектора с зеркалом диаметром 6 м.

Для определений координат небесных объектов и ведения службы времени используют меридианные круги, пассажные инструменты, вертикальные круги, зенит-телескопы, призменные астролябии и др. инструменты. В астрогеодезич. экспедициях применяют переносные инструменты типа пассажного инструмента, зенит-телескопы, теодолиты. Крупные солнечные телескопы, обычно устанавливаемые неподвижно, делятся на башенные телескопы и горизонталь-ные телескопы; свет направляется в них одним (сидеростат, гелиостат) или двумя (целостат) подвижными плоскими зеркалами. Для наблюдений солнечной короны, хромосферы, фотосферы применяют внезатменный коронограф, хро-мосферные телескопы и фотосферные телескопы.

Быстро движущиеся по небу искусственные спутники Земли фотографируют с помощью спутниковых фотокамер,позволяющих с высокой точностью регистрировать моменты открывания и закрывания затвора.

При наблюдениях используют вспомогательные приборы: окулярные микрометры - для измерения угловых расстояний, кассеты - для фотографирования, а также светоприёмную и  анализирующ у ю аппаратуру: астроспект-рографы (щелевые и бесщелевые, призменные, дифракционные и интерференционные) - для фотографирования спектров Солнца, звёзд, галактик, туманностей, а также объективные призмы, устанавливаемые перед объективом телескопа и позволяющие получить па одной фотопластинке спектры большого количества звёзд. Небольшие и средние астроспектрографы монтируют на телескопе так, чтобы щель спектрографа была в фокусе телескопа (в главном фокусе, фокусах Ньютона, Кассегрена или Не-смита); большие спектрографы устанавливают стационарно в помещении фокуса куде.

В большинстве случаев визуальные наблюдения глазом вытеснены наблюдениями с объективными светоприёмниками. В качестве последних применяют специальные высокочувствительные сорта фотопластинок, приборы для электрофо-тометрич. регистрации излучения небесных светил с применением фотоумножителей и усилением света с помощью электронно-оптических преобразователей, практикуются телевизионные методы наблюдений, электронная фотография и использование светоприёмников инфракрасного излучения (см. Приёмники излучения).

В древности основным прибором времени служили солнечные часы, гномоны, а затем - стенные квадранты, с помощью к-рых определяли моменты пересечения Солнцем или звездой плоскости меридиана. В совр. астрономии для этой цели применяют пассажные инструменты с фотоэлектрич. регистрацией. Наиболее точным маятниковым прибором для хранения времени являются часы Шорта, часы Федченко (см. Часы астрономические). Однако в наст. время их вытесняют кварцевые и молекулярные (или атомные) часы.

Для обработки фотоснимков, получаемых в результате наблюдений, применяют  лабораторные приборы: координатно-измерителъные машины (для измерения положения изображений небесных светил на фотоснимке), блинк-компараторы (для сравнения между собой двух фотоснимков одного и того же участка неба, полученных в разное время), компараторы (для измерений длин волн спектральных линий на спектрограммах), микрофотометры (для измерений распределения интенсивности в спектре на спектрограмме), звёздные микрофотометры (для определений яркости звёзд по фотографиям).

Для вычислений, связанных с обработкой результатов наблюдений, применяют счётно-решающие машины. К демонстрационным приборам относятся теллурии - модели Солнечной системы, и планетарии, позволяющие на внутр. поверхности сферич. купола наглядно показывать астрономич. явления.

В истории наблюдательной астрономии можно отметить 4 основных этапа, характеризующихся различными средствами наблюдений. На 1-м этапе, относящемся к глубокой древности, люди с помощью спец. приспособлений научились определять время и измерять углы между светилами на небесной сфере. Повышение точности отсчётов достигалось гл. обр. уреличением размеров инструментов. 2-й этап относится к нач. 17 в. и связан с изобретением телескопа и повышением с его помощью возможностей глаза при астрономич. наблюдениях. С введением в практику астрономич. наблюдений спектрального анализа и фотографии в сер. 19 в. начался 3-й этап. Астрографы и спектрографы дали возможность получить сведения о хим. и физ. свойствах небесных тел и их природе. Развитие радиотехники, электроники и космонавтики в сер. 20 в. привело к возникновению радиоастрономии и внеатмосферной астрономии, ознаменовавших 4-й этап.

Первым астрономич. инструментом можно считать вертик. шест, закреплённый на горизонтальной площадке, - гномон, позволявший определять высоту Солнца, направление меридиана, устанавливать дни наступления равноденствий и солнцестояний. Изобретателями способа измерения и разделения времени считают вавилонян; но и в Египте и особенно позднее в Др. Греции в эти способы были внесены значит. изменения. Развитие конструкций астрономич. инструментов в Китае с древнейших времён шло, по-видимому, независимо от аналогичных работ на Бл. и Ср. Востоке и на Западе. Достоверные сведения о др.-греч. астрономич. инструментах стали достоянием последующих поколений благодаря <<Альмаzесту>>, в к-ром наряду с методикой и результатами астрономич. наблюдений К. Птолемей приводит описание астрономич. инструментов - гномона, армиллярной сферы, астролябии, квадранта, параллактич. линейки,- применявшихся как его предшественниками (особенно Гиппархом), так и созданных им самим. Многие из этих инструментов были в дальнейшем усовершенствованы и ими пользовались на протяжении многих столетий.

В период раннего средневековья достижения др.-греч. астрономов были восприняты учёными Ближнего и Среднего Востока и Ср. Азии, к-рые усовершенствовали их инструменты и разработали ряд оригинальных конструкций. Известны труды о применении астролябий и о их конструкциях, о солнечных часах и гномонах, написанные аль-Хорезми, аль-Фергани, аль-Ходженди, аль-Бируни и др. Существенный вклад в развитие астрономич. инструментов внесли астрономы Марагинской обсерватории (На-сирэддин Туей, 13 в.) и Самаркандской обсерватории (Улугбек, 15 в.), на к-рой был установлен гигантский секстант радиусом ок. 40 м.

Через Испанию и Юж. Италию достижения этих астрономов стали известны в Сев. Италии, Германии, Англии и Франции. В 15 -16 вв. европейские астрономы использовали наряду с инструментами собств. конструкции также и описанные учёными Востока. Широкую известность получили инструменты Г. Пурбаха, Региомонтана (И. Мюллера) и особенно Тихо Браге и Я. Гевелия, к-рые создали много оригинальных инструментов высокой точности.

Начало телескопич. астрономии обычно связывают с именем Галилео Галилея, к-рый с помощью изготовленной им самим в 1609 зрительной трубы (зрительная труба была изобретена незадолго перед этим в Голландии) сделал выдающиеся открытия и дал им правильное науч. объяснение. В 1611 И. Кеплер опубликовал описание новой системы зрительной трубы, имевшей, помимо большего поля зрения, ещё одно важное преимущество: она давала в фокальной плоскости действительное изображение небесного объекта, к-рое стало возможным измерять, помещая в фокальную плоскость точную шкалу (крест нитей). Изобретение окулярного креста нитей и микрометра в 40 - 70-х гг. 17 в., связанное с именами У. Гаскойна, X. Гюйгенса, Ж. Пикара, А. ОЗУ, значительно расширило возможности телескопа, сделав его не только наблюдательным инструментом, но и измерительным. Однолинзовые объективы первых рефракторов давали изображения невысокого качества - окрашенные и нерезкие. Нек-рое улучшение изображений достигалось увеличением фокусного расстояния объектива, что привело к сооружению очень длинных громоздких телескопов.

В 17 и 18 вв. в разных странах было разработано несколько схем рефлекторов. Н. Цукки в 1616 предложил схему рефлектора с одиночным вогнутым зеркалом, наклонённым под небольшим углом к оси трубы, что позволяло обходиться без вторичного зеркала, обязательного в большинстве более поздних схем. Но сам Цукки не создал телескопа по предложенной им схеме. Одно-зеркальный рефлектор впервые был создан М. В. Ломоносовым (описан в 1762). Позднее большой однозеркальный рефлектор построил В. Гершель. В 1638 М. Мерсенн, в 1663 Дж. Грегори, в 1672 Ф.Кассегрен разработали новые схемы рефлекторов - с двумя зеркалами. В 1668-71 И. Ньютон предложил схему и изготовил телескопы, в к-рых вторичное зеркало было плоским и наклонено под углом 45° к оси трубы для отражения лучей в окуляр, расположенный сбоку. Сравнительная простота изготовления при-вела к тому, что количество рефлекторов такого типа и размеры сооружаемых инструментов стали быстро расти; им длительное время отдавалось предпочтение.

Одновременно продолжали совершенствоваться и рефракторы. Возможность изготовления ахроматич. объектива в 1742 была теоретически доказана Л. Эйлером, а в 1758 Дж. Доллонд создал такой объектив. Позднее, в 1-й четв. 19 в., благодаря усовершенствованию оптич. стекловарения П. Гина-ном и опыту Й. Фраунгофера появились предпосылки для создания более совершенных рефракторов с ахроматическими объективами.

Лит.: Телескопы, под ред. Дж. Койпера и Б. Миддлхёрст, пер. с англ., М., 1963; Максутов Д. Д., Астрономическая оптика, М. -Л., 1946; М а р т ы н о в Д. Я., Курс практической астрофизики, 2 изд., М., 1967; Методы астрономии, под ред. В. А. Хилтнера, пер. с англ., М., 1967; Современный телескоп, М., 1968; Rep-sold J. В.. Zur Geschichte der ast-ronomischen Messwerkzeuge, Lpz., 1908; King Н. С., The history of the telescope, L., 1955. Н. Н. Михельсон. 3. К. Новокшанова-Соколовская.





T: 35